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Abstract—This paper describes the IBM One-Click Learning
(OCL) platform, an ongoing internal effort in IBM Research
aimed at providing end-to-end support for the full data science
process. The design decisions behind the platform are presented,
specifically with regard to promoting adoption and applicability
within application domains where the potential of machine learn-
ing (ML) is recognized but still not fully harnessed. We focus on
the representative case study of applying ML to civil engineering,
a domain of growing interest also thanks to the EU coordination
and support action to improve the European standards for
inspection, monitoring and maintenance of bridges, tunnels
and other types of transport infrastructures. This example is
illustrative of the major roadblocks for adoption of ML in new
application domains: the diversity in user profiles and familiarity
with data science among domain practitioners; the variety in
available hardware infrastructure and computing needs; and
the heterogeneity, specificity and unsettled evolution of the use
case landscape. Removing these roadblocks requires designing
a platform explicitly geared towards usability goals of broad
accessibility on one hand, and extensibility and specialization
on the other one. We elaborate on a set of functionalities to
support these usability goals and thereby enable the design of
a task agnostic end-to-end platform to drive ML adoption and
workflow standardization in new dynamic application domains.
Finally, we present the IBM OCL platform as a proof-of-concept
implementation of these functionalities and validate it in a use
case where computer vision models are deployed to aid visual
inspection of a bridge.

Index Terms—Machine Learning, cloud data platform, stan-
dardization, transport infrastructure, inspection and monitoring

I. INTRODUCTION

Adequate information from inspection and monitoring of
constructions is crucial to take the right decisions on mainte-
nance and safety of bridges and tunnels. In Europe, these trans-
port infrastructures are vital for the functioning and growth of
the economy and society. Unfortunately, these infrastructures
are ageing; in the last two decades major failures of bridges
and tunnels in Europe caused hundreds of casualties.

Digitalization is key to obtaining, analyzing and sharing
accurate information about the condition and maintenance of
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transport infrastructures while they are coping with increasing
traffic loads and resilience threats. Therefore, digitalization has
become an important aspect in updating the existing European
standards and developing new standards for inspection, mon-
itoring, maintenance and safety of transport infrastructures.
The standardization-oriented effort is performed in the EU
Coordination and Support Action titled “IM-SAFE” [1].

This paper describes the IBM One-Click Learning (OCL)
platform, an ongoing effort internal at IBM Research aimed at
providing end-to-end support for the full data science process.
In particular, we will focus on the functionalities of the IBM
OCL platform that help implement the standardization goals
of IM-SAFE and address some of the challenges arising in
Big Data and Data Analytics in general, and within the use
specifications of inspection and structural health monitoring
(SHM) of transport infrastructures in particular. The focus will
therefore be on the general design considerations behind the
IBM OCL platform that enable a unified standardized treat-
ment of generic Machine Learning use cases and workflows.

In the next section, a brief overview of the existing data
and machine learning (ML) platforms is presented. We then
delineate the design considerations behind IBM OCL in terms
of functionalities that enable a standardized unified workflow
accommodating generic ML workloads and pipelines. We then
explain how these functional requirements are specifically
implemented by the architecture of OCL. Then, in order to
validate the applicability of the proposed solution, we will
present a case study demonstrating a computer vision object
segmentation task applied to the identification of defects for
the inspection of a bridge. Finally, conclusions on the achieve-
ments and lessons-learned are drawn, and recommendations
for further development and standardization are addressed.

II. RELATED AND RELEVANT ML PLATFORMS

There have been several important works in the past aimed
at creating cloud-based solutions that would broaden user
accessibility. An important way to achieve that is to free the
user from having to worry about how to provision compute
infrastructure by automating resource allocation. This chal-
lenge has been tackled for instance by [2]–[4]. This line of
work was technically supported by studies that investigated
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the suitability specifically of cloud infrastructure for specific
ML workloads [5]–[11].

Other important developments to lower the barrier for entry
to large-scale machine learning were to provide generic ML
as a Service (MLaaS) ( [12]), and to allow users to access
a prediction service through an API and a Graphical User
Interface as demonstrated by [13].

Some of these considerations have been implemented in sev-
eral existing commercial platforms among which some of the
most popular are: IBM Cloud Pak for Data [14] (an end-to-end
ML platform available on IBM Cloud which integrates IBM
Watson Studio for model automation); Google Cloud AI [15],
Azure Machine Learning [16] and Amazon SageMaker [17]
(enterprise-grade platforms for the end-to-end ML lifecycle
from Google, Microsoft and Amazon, respectively); H2O.ai
[18] (an open source end-to-end ML platform).

All mentioned commercial platforms provide Graphical
User Interfaces that abstract away resource allocation as well
as several aspects of the selection of the appropriate algorithms
and model hyperparameters for a particular task of interest.
That helps considerably lowering the barrier of entry into
the utilization of ML methods to practitioners that are not
expert in data science and managing its supporting hardware
infrastructure.

The main additional feature that differentiates between these
commercial platforms and the OCL platform that we are
presenting in this article is the focus on a modular design
that enables high interoperability between tasks and workloads
along the whole ML pipeline, sharing access to these among
users, and the quick integration of novel elements (models,
data preprocessing or training procedure, etc) from prototypes
and R&D assets at the bleeding edge of the ML development
cycle. This design choice was motivated by the decision to
guarantee two core usability goals of 1. broad accessibility,
irrespective of user expertise with coding, ML or hardware,
and 2. extensibility and specialization of the platform in order
to quickly incorporate evolving practices and needs within the
application domain. In the section below we elaborate on this
design choices and the functional requirements implemented
in the IBM OCL platform that enable them.

III. ESSENTIAL FUNCTIONAL REQUIREMENTS TO ENABLE
WORKFLOW STANDARDIZATION

Behind the design of OCL are several functional require-
ments that have been taken into consideration in order to
enable workflow standardization across different use cases.
These have shaped architectural and implementation decisions.

The main roadblock to adoption and standardization of
ML workflows within specific application domains and in-
dustries is first of all the large diversity in user profiles
and degrees of familiarity with data science among domain
practitioners. This challenge is further compounded by the
difficulties that potential adopters might face while negotiating
their computing needs within a varied and fractured hardware
infrastructure landscape. At the same time, when defining the
scope of the use cases that an ML platform should cover to

promote adoption, one quickly comes to the realization that
in many application domains like civil engineering the use
of ML is relatively novel, meaning that application scenarios
are currently limited and will possibly be expanded as new
data, analysis techniques and opportunities for value creation
become available.

Taking these considerations into account we set out to
design the OCL platform based on a set of requirements to
simultaneously support the following two usability goals:

• Broad accessibility: the platform should be suitable for
everybody in order to enable practitioners with no coding,
ML, hardware deployment or framework-specific exper-
tise to explore their data, synthesize models, analyze
results of training and inference;

• Extensibility and specialization: the platform should be
useful for data science and ML researchers as well, both
as working environment to conduct research itself, and
as a means to quickly integrate research products in
order to extend it with the latest cutting-edge features
and specialize it to novel emerging needs within an
application domain of interest.

In many cases, guaranteeing broad accessibility translates
into automating and abstracting away tasks and implementa-
tion details that commonly arise in ML. In addition, the goal
of accommodating extensibility and specialization emphasizes
an architectural design focused on modularity, and ease of
development and integration of new features. In the next
sections we describe how these considerations play out in the
design choices of the OCL platform in terms of UI/UX, data
management, hardware resources provisioning and manage-
ment, and compute jobs scheduling and orchestration.

A. UI/UX

In order to guarantee our first usability goal of enabling
broad accessibility, we want the end user to be able to fully
operate the platform from an intuitive UI, similarly to the
majority of other commercial platforms. However, handling
completely different tasks within a fixed user interface does
not guarantee the best user experience: for example, exploring
a civil infrastructure dataset composed of many annotated
images organized in a hierarchical structure, is more efficient
with the availability of specific navigation tools which exploit
this particular structure, if compared to exploring a generic
object detection dataset with standard tools. Therefore, mod-
ularity and extensibility of the framework are important also
regarding the user interface itself.

Another important requirement of the first point is that, by
controlling simple high level budget parameters (e.g. comput-
ing time to consume, resources to use, wanted optimization
level, etc.), the system should help taking decisions on how to
obtain the best model it can, based on the available data and
under the requested budget constraints.

In addition, experienced users that require programmatic
access to the platform are provided with a REST API that gives
control on all parameters and enables programmatic interaction



with the platform, which can be for instance necessary when
clients need to integrate the system in existing data pipelines.

B. Data management

The primary and most important asset of any ML-based
system is data. Performance of any kind of model directly de-
pends on the availability and quality of the data which can be
used for training. Therefore, in OCL we have adopted a data-
centric approach in the organization of the functionalities of
the platform. Particular care has been taken into offering to the
user data exploration capabilities, and many internal decisions
are automatically taken based on the type of data, its quantity
and its quality. Thus, the architecture of the system allows very
topic-specific customizations on data analysis and exploration
tools, necessary to give the best user experience, while still
serving as a base for completely different use cases (e.g. civil
infrastructure object detection vs. NLP pipelines). This can be
accomplished with a layered approach to data management,
based on decoupling the component that manages generic
data, common to all ML fields, from the components that
deal with features specific of a single topic. Researchers can
easily incorporate new topic-specific components: once they
are automatically discovered and registered by the platform,
the new features become available. These can include new
customizations available from the UI, new operational steps in
the data pipelines, or also capabilities for handling completely
new data types and associated models. All these building
on top of an abstraction layer providing management of a
common base of generic data structures, letting the researcher
be free to focus on the topic-specific functionalities. This
common base layer is completely agnostic of the actual content
of the data and provides common functionalities such as
transparent access to heterogeneous data sources (e.g. cloud
objects storage, shared filesystems, etc.), ingestion and transfer
of data among the components of the system, and the ex-
tremely important aspect of user authentication, data security
and compliance.

C. Hardware Resources Provisioning

An important but tedious task that any ML work needs
to tackle is handling computing resources. As data becomes
bigger and models become deeper and more complex, it
becomes a must to make use of GPU resources, especially
for computer vision or NLP tasks. These can, however, be
considered as a scarce resource, due to their cost. There-
fore, an important aspect to automate is the provisioning
of computational resources. This brings both the benefit of
optimal allocation of computing power among the pending
tasks, providing also fairness of usage between users of the
platform, together with potential cost savings when resources
can be dynamically allocated (e.g. for cloud provisioning).

Due to the scarcity nature of GPUs, we specifically included
in the design of OCL flexibility in the usage and management
of computational resources. Goal is to be able to exploit all
potential computational power we have access to: this includes
cloud resources, potentially from different cloud vendors, but

also more traditional HPC clusters. For example, a client with
strong requirements on data security and locality could have
already invested on an on-prem hardware solution; researchers
could already have access to institutional shared HPC clusters;
clients could have deals with cloud vendors managing their
data. Flexibility in management of computational resources
allows users to organize the hardware infrastructure in the best
way it fits their use cases.

D. Jobs Scheduling

With job we refer to all those units of computation that are
performed on given input data, such as preprocessing a dataset,
or training a model, and so on. Given the flexibility offered in
the potentially usable computing resources, having a strong
abstraction around the generic computing job is necessary.
For cloud-based solution, containers are powerful tools which
bring the needed decoupling between the task that is being
performed and the underlying deployment. However, they are
not always available to be used in more traditional HPC
clusters, thus requiring this abstraction to be implemented at
code-level as well.

Once we have the definition of a generic computing job,
next important step for the platform is to manage multiple jobs,
potentially issued by different users. This task, performed by
the job scheduler, includes:

• management of job queuing, taking into account priorities
of the users and their access to computing resources;

• handling of failures, automatic restarts of jobs past wall-
time limits, real-time feedback on running tasks;

• management of computational resources, differentiating
between CPU and GPU-intensive jobs.

These components described above together form a platform
built around extensibility and modularity, which is ready to
offer a simple way for accommodating integration of pro-
totypes and ML research assets. To begin with, an early
access portal to R&D prototypes enables clients to test out
the use of cutting-edge research features, even before they
reach full maturity. This allows to provide feedback, speeds
up the development-deployment cycle by favouring an agile
development process of features before integration in more
stable products. At the same time, it keeps researchers as free
as possible from the constraints of stability and maturity that
productization requires, which is, in our opinion, a key point
in the ever-evolving landscape of AI development.

IV. BACKEND IMPLEMENTATIONS IN IBM OCL PLATFORM

In the previous section, we described the high level re-
quirements we observed when taking the design decisions for
our OCL platform. In the following we briefly introduce its
architecture, sketched in Fig. 1.

The system is divided into two main logically separated
parts: the head and the hands.

The head is the main center of operations. It includes all
components which are not computationally-intensive, which
deal with:

• management of users and authentication providers;
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Fig. 1. Diagram sketching the OCL architecture.

• high-level management of projects and data;
• organization and access to the computing resources;
• scheduling of jobs;
• user interface and REST API.

The architecture is based on micro-services and is usually
deployed in the cloud, for ensuring high availability. Internally,
we devised a set of basic entities which are common to all AI
workflows and are passed around the various services (among
the others: datasets, annotations, models, tasks, runs, users,
projects, etc.). Use case-specific assets can define specialized
entities on top of the basic ones: examples in the civil
engineering domain are civil engineering asset, defect, and
so on. All components talk to each other by means of a
centralized document-based NoSQL database, where metadata
regarding all entities is stored. The database contains no data
by itself, but just information on how to access it as pointers to
external sources. A convenient API layer provides the means
to then access the data by UUID or name, transparently from
its actual physical location. All micro-services are stateless, to
lower their complexity while ensuring scalability. Specifically,
we have two sets of services:

• the server: the main entry point of the system, providing
the REST API layer offering access to all functionalities
and hosting the user interface;

• the orchestrators: multiple services handling the organi-
zation and scheduling of jobs.

With hand we refer instead to the logical part running
computationally-intensive jobs. This component can have spe-
cial requirements in terms of access to the hardware: it may
need one or multiple GPUs, exclusive access to multiple cores,
extensive amounts of RAM, or big local storage as cache. Each
hand can be linked to different computational resources (being
on cloud, or on other clusters). In OCL multiple hands can be
registered simultaneously and it is up to the head to provide
transparent access to them, to handle data transfers in and out
and to manage the execution of jobs. In particular, jobs are
scheduled in two stages:

• A high level orchestrator checks the presence of new jobs
to run from a global queue; these are usually pipelines

divided into stages (or runs). Based on the pipeline needs
in terms of hardware and the accessibility of the user
to the available computational resources, the orchestrator
decides to which hand to submit the runs.

• A hand-specific orchestrator takes the runs from its own
specific queue, prepares the container or environment in
which to execute them (based on the type of deployment
to use) and submits them for execution.

This last step depends on the actual computing environment
the job is destined to run on. In case of cloud-based de-
ployment, jobs are handled as kubeflow pipelines [19]. When
dealing with HPC clusters, a specialized orchestrator connects
to the login node, prepares the environment and data, and
submits the job using the cluster-specific job queuing system
(e.g. IBM Spectrum LSF). It is the duty of the orchestrator
services to keep track of all hands and to report real-time
information about running jobs to the head.

V. CASE STUDY: VISUAL INSPECTION OF TRANSPORT
INFRASTRUCTURE

In this section, we showcase the application of OCL to
the visual inspection of transport infrastructures, taking the
particular example of bridge inspection. This specific use case
emphasizes the user- and data-centric aspects of OCL, in
particular its modular design and extensibility that allowed
it to integrate in a traditional ML workflow the management
of customized application-specific assets and analysis tools
in terms of specialized entities that are of interest to civil
engineering users and domain expert.

Until recently bridge inspection was exclusively a manual
process conducted by reliability engineers. Not only is this
dangerous due to the complexity of the structure and the fact
that some parts are hardly accessible, but it is also estimated to
cost $50B and $2B man-hours annually. The main objective
of the inspection is to assess the condition of an asset and
determine whether repair or further maintenance operations
are needed. Specifically, engineers make such decisions by
analyzing the surfaces and detecting defects, such as cracks,
spalling, rust or algae, and assessing their severity, relative to
the defect size and location in the structure.

The advances in drone technology and its falling costs have
recently pushed this laborious process of manual inspection
progressively towards automation. Flying drones around a
structure and using embedded high-resolution cameras to
collect visual data from all angles not only speeds up the
inspection process, but it also removes the human from
potentially dangerous situations. In addition, thanks to the
power of artificial intelligence capabilities, defects can be
detected and localized with high precision automatically and
presented to the reliability engineer for further analysis. Our
OCL platform is at the center of providing experts with such
advanced capabilities. By taking a data-centric approach, it
focuses the user experience around the management of users’
assets, providing specific features for:

• powerful data exploration of large datasets and high-
resolution images with corresponding detected damage;



• detection, characterization and measurement of damages;
• reconstruction of infrastructure elements and localization

of damages with automated image stitching;
• quick extraction of actionable results;
• empowering engineers and infrastructure managers to use

pre-trained AI models for everyday inspections.

A compelling visual inspection use case is that of the
Storebælt East suspension bridge, owned and operated by
Sund & Bælt [20]. The bridge is part of the Great Belt Fixed
Link [21] in Denmark. At 254 metres above sea level, the East
Bridge has a length of 6790 metres and a free span of 1624
metres. A visual inspection of all 22 pillars was conducted
in June 2021 with Matrix DJI 300 RTK drones. More than
23k high-resolution images were collected, where each image
consists of ≈ 6k × 4k pixels (24M pixels). The OCL platform
is used to store, analyze and visualize these images.

First, as seen in Fig. 2, general statistics are presented to
the engineer. On the left side, a progressive view of the bridge
that dives into the pillars, their orientations and corresponding
images, allow the user to understand the hierarchy of the
structure and quickly locate data of interest. On the right side, a
summarized view of the images collected during drone inspec-
tion and the defects detected and classified during the inference
of the AI model is provided. The defects are classified into
categories specific to the use case (i.e., 6 here: crack, rust,
spalling, algae, net-crack and crack with precipitation). Below
the summary section, more detailed statistics are presented,
such as average area (in m2) per defect type and distribution
of defects across the dataset.

Additionally, the platform provides filtering options to en-
able an intuitive and fast navigation through the defects.
Specifically, one can select one or more defect categories and
provide ranges of interest for attributes like area (in pixels or
m2), confidence score as resulting from the model inference
or severity rating. This will return the set of images satisfying
this criteria. The user can navigate through the selected images
and visualize all defects detected in a specific image, as seen
in Fig. 3. By hovering with the mouse over a defect, more
details of interest are provided, such as type of defect, area in
pixels and m2, prediction score and severity level.

While the functionality described so far applies per individ-
ual image, it already provides great benefits to reliability engi-
neers. However, decisions around repair and maintenance take
into consideration the locations of defects in a bridge structure
as well. Powered by image stitching algorithms, OCL provides
an overall view of each bridge pillar. These stitched images
are reconstructed automatically from the raw high resolution
photos taken by the drone, by using image rectification and
location reconstruction algorithms, and combine all defects
detected in the individual images that were attached together,
as shown in Fig. 4. It is always possible for the engineer to
go from the overview image to the underlying raw photos
for further detailed inspection (e.g., by clicking on the red
highlighted area in Fig. 4). Intuitive navigation through the raw
photos is possible by means of a minimap (shown in Fig. 5),

which allows also to have an overview of where in the pillar
structure each defect is located.

These stitched images are extremely big in size, as they
preserve the full resolution of the already detailed raw photos.
In order to deliver a smooth navigation, in the civil infrastruc-
ture component in OCL, images are divided in multi-resolution
tiles and streamed to the browser from cloud object storage
on demand. This is just one of the challenges that we had
to overcome when dealing with such a big amount of data.
Nevertheless, thanks to the flexible architectural design of the
platform and the scalability of cloud-based solutions, we are
able to deliver a smooth user experience in these complex use
cases also.

Fig. 2. Hierarchical view of assets (left); summary of dataset and associated
defects, as detected and classified into 6 categories during AI-model inference.

Fig. 3. Visualization of defects in specific image with associated confidence
score as computed by the AI-model.

VI. DISCUSSION

In this paper we presented the design of the IBM OCL
platform, an end-to-end platform that aims to be task-agnostic
and thereby providing a basis for standardization of ML
workflows in technical domains that are still in the process of
adopting and refining data science practices. In these domains,
the main roadblock to adoption is the need to design a platform
that can accommodate as much of the already established tasks
and practices of current domain practitioners, while at the
same time being flexible enough to adapt to evolving needs
and growing application modes.

The way the IBM OCL platforms negotiates this tension
between broad accessibility and extensibility and specializa-
tion is with a modular design thanks to which all components
in the system can be flexibly reused and recombined for the



Fig. 4. Overall view of a bridge pillar, after image stitching algorithm was
applied. Summary of defects is provided on the left and different categories
are distinguished by color in the stitched image.

Fig. 5. Highlight on a defect; a minimap with the overview stitched image
is showing the corresponding location of the defect on the full pillar.

different use cases, while remaining as decoupled as possible.
By allowing for seamless swapping in/out of features and
refactorings of capabilities, such modularity in design also
has the added benefit of enabling the typical agile workflow
of an R&D setting. In turn, doubling as an environment
for R&D of novel ML assets that are bespoke to specific
application domains endows the IBM OCL platforms with
the advantages of a rapid development cycle affording it
unprecedented customizability and potential for specialization
in such domains. At the same time, because of the decoupled
nature of its modular elements, OCL is able to mitigate the
problem of overengineering of the structure, one of the major
pitfalls that tends to happen when trying to develop a one-fits-
all solution in advance.

Last but not least, we stipulate that the development of a
shared data science platform that can be modularly extended
and customized to evolving needs and application scenarios
should be considered as a useful stepping stone towards a
standardized, reliable and replicable use of data analytics that
could serve as a basis to support robust and safe critical infras-
tructure, like for instance transport infrastructure in Europe, as
illustrated by the bridge inspection use case that we examined.
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