

Pan-European Community of Practice towards standardisation for:

"Digitalisation in inspection, monitoring and maintenance of transport infrastructures"

IM-SAFE

Session 3

GET READY !

- Good afternoon and warm welcome to this online symposium!
- When joining, please mute your microphone and switch off your webcam.
- This online session is recorded.
- For questions, please use the Chat function in Zoom.

AGENDA

Moderator: Rizal Sebastian (TNO, NL)		Activities	Guest speakers and panellists		
13:00 - 13:10	Opening	Welcome and opening wordsObjective and agenda	Machteld de Kroon (TNO, NL) Rizal Sebastian (TNO, NL)		
13:10 - 13:55	Session 1: Smart Sensing and Imaging	 Session introduction Best practice example from INSITU, ES Short technical presentation by SACERTIS, IT Panel discussion & questions from online audience 	Isabelle Alovisi (SACERTIS, IT) René Schumann (HOCHTIEF ViCon, DE) Sara Cuerva Navas (FERROVIAL, ES) Sverre Kjetil Rød (Norwegian Public Road Authority, NO) Diego Allaix (TNO, NL)		
13:55 - 14:05	10-minute break				
14:05 - 14:50	Session 2: Artificial Intelligence	 Session introduction Best practice example from IBM Research, CH Short technical presentation by IBM Research, CH Panel discussion & questions from online audience 	Ioana Giurgiu & Cristiano Malossi (IBM Research, CH) Meenagi Venkat (KNOWCE, IT) Arnwald Janssen (Rijkswaterstaat/Ministry of Infrastructure, NL)		
14:50 - 15:00	10-minute break				
15:00 - 15:45	Session 3: Data interoperability	 Session introduction Best practice example from TNO, NL & AEC3, DE Short technical presentation by AEC3, DE Panel discussion & questions from online audience 	Matthias Weise (AEC3, DE) Raimar Scherer (TU Dresden, DE) Frank Opitz (Deutsche Bahn, DE) Michel Böhms (TNO, NL) Sanne Jansweijer (NEN, NL)		
15:45 - 16:00	Conclusion	 EC policy initiatives in digitalization and transport infrastructure Concluding remarks 	Rafal Stanecki (European Commission, DG MOVE) Konstantinos Gkoumas (European Commission, JRC) Agnieszka Bigaj-van Vliet (TNO, NL)		
IM-SAFF - Horizo	on 2020 Coordination & Supp	out Action	3		

SESSION 3 : DATA INTEROPERABILITY AGENDA FOR 15:00 - 15:45

- Session introduction (Rizal Sebastian, TNO)
 - Wide variety of data sources and types needed in inspection, monitoring and maintenance over the assets' lifecycle
 - Interoperability challenge for standardisation: open standard for linking and sharing BIM, GIS, IoT and other data
- Best practice example from TNO, NL & AEC3, DE
- Short technical presentation by AEC3, DE (Matthias Weise)
- Panel discussion & questions from online audience

BEST PRACTICE EXAMPLE FROM TNO & AEC3

Session 3 video 1

SHORT TECHNICAL PRESENTATION MATTHIAS WEISE – AEC3, GERMANY

DATA INTEROPERABILITY – CHALLENGES

OTL – Object Type Library

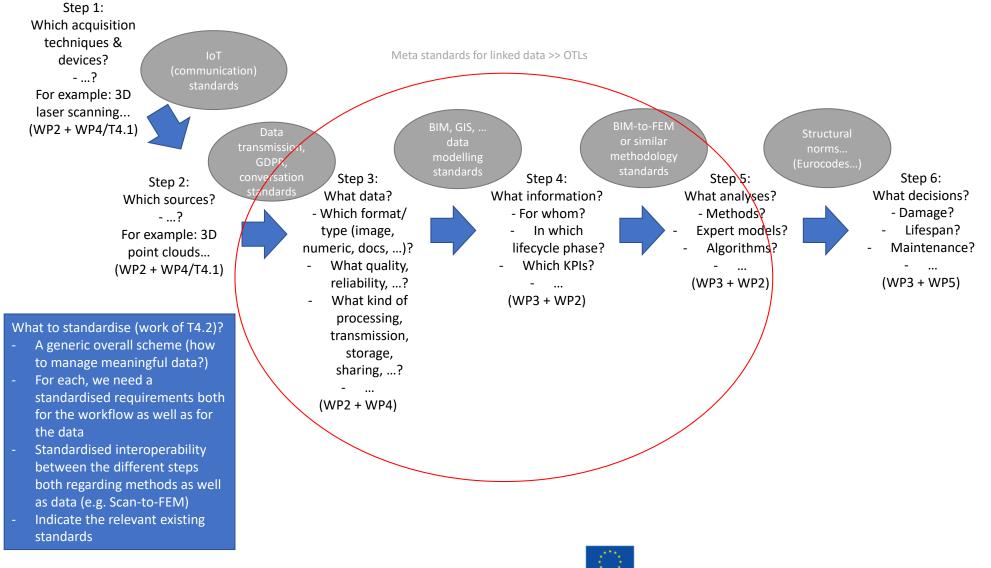
BIM/Digital Twin

Information Silos – Various Data Sources

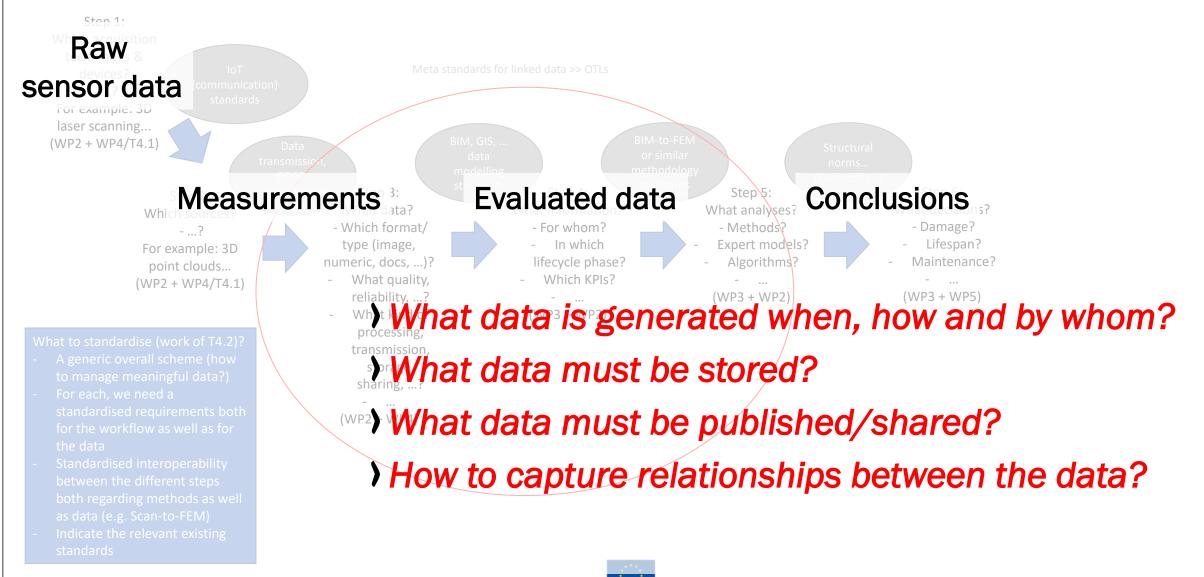
Data Sharing & Data Interoperability

What is missing and what should be standardized?

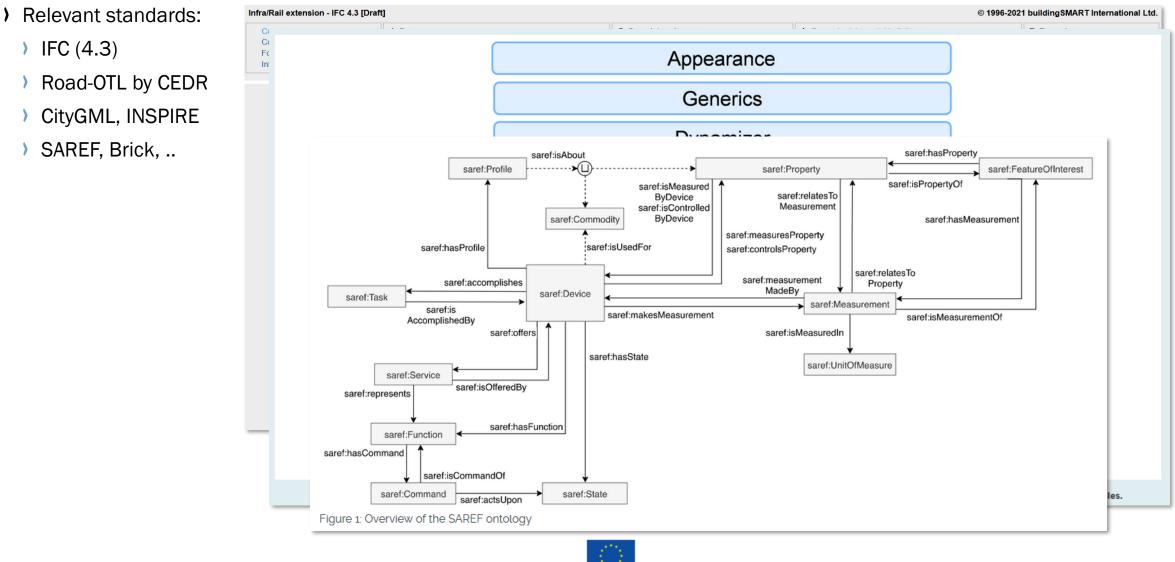
Modelling & Linking Guide



APPROACH AND SIMILARITY WIT BIM Building Information <u>Modelling/Model/Management</u> Technology **Processes** Data (Data Access) (Work- and Dataflows) (Semantic)

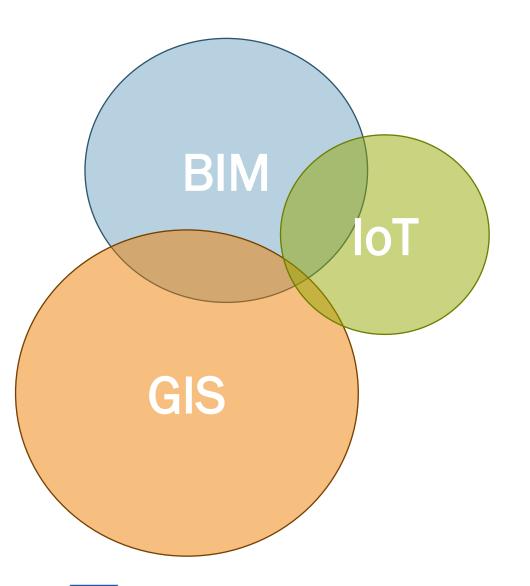

PROCESSES

IM-SAFE - Horizon 2020 Coordination & Support Action


PROCESSES

IM-SAFE - Horizon 2020 Coordination & Support Action

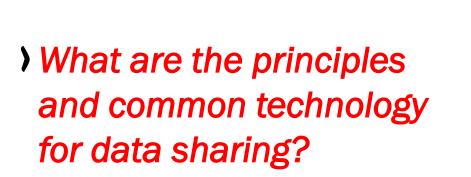
DATA

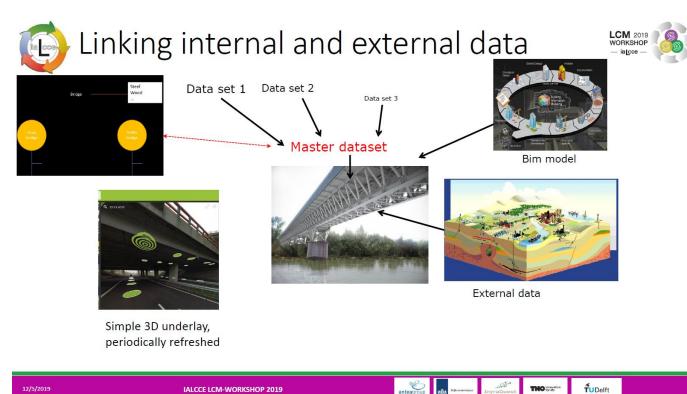


DATA

-) Relevant standards:
 -) IFC (4.3)
 - Road-OTL by CEDR
 - CityGML, INSPIRE
 - SAREF, Brick, ..

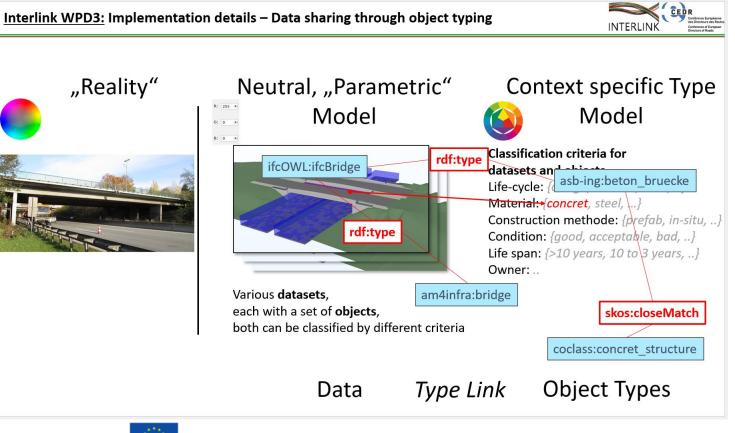
What is the scope?Where are overlaps?





TECHNOLOGY

- > Emerging approaches and technologies:
 - Linked-Data and Semantic Web Technology by W3C
 Interlink approach initiated by CEDR
 BIM-SML (Semantic Modelling and Linking) CEN 17632
 - Digital Twin concept
 - MQTT, DDS data protocols



TECHNOLOGY

- > Emerging approaches and technologies:
 - Linked-Data and Semantic Web Technology by W3C
 Interlink approach initiated by CEDR
 BIM-SML (Semantic Modelling and Linking) CEN 17632
 - Digital Twin concept
 - MQTT, DDS data protocols

• What are the principles and common technology for data sharing?

15

IM-SAFE - Horizon 2020 Coordination & Support Action

further information at: https://www.go-fair.org/fair-principles/

Open protocol to retrieve the data by ID, access control where necessary > I – Interoperable

Open modelling language, vocabularies following FAIR principles

Paper puplished 2016 about Scientific Data Management and Stewardship

) <u>R – Reusable</u>

> F – Findable

A – Accessible

> Well described data (license, provenance data, meet domain-relevant standards)

Technology (Management)

Data (Semantic)

Process (Work- and Dataflow)

FAIR PRINCIPLES

(M.D. Wilkinson et al., published in Scientific Data)

Unique identifier for (meta) data, searchable, ...

SESSION 3 : PANEL DISCUSSION

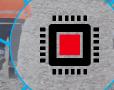
- Brief introduction of the panellists:
 - Raimar Scherer (TU Dresden, DE)
 - Frank Opitz (Deutsche Bahn, DE)
 - Michel Böhms (TNO, NL)
 - Sanne Jansweijer (NEN, NL)
- Sharing the views on 'data interoperability' (short pitches as prelude for discussions):
 - What are the challenges of open data standardisation for transport infrastructures? (Raimar Scherer)
 - What is the data interoperability strategy of a public client and what is its expectation for standardisation? (Frank Opitz)
 - What is the landscape of open standardisation of data in the built environment? (Michel Böhms)
 - What can civil infrastructure learn from the standardisation process in the ICT domain? (Sanne Jansweijer)
- Interactive discussion between the panellists & questions from the online audience

SESSION 3 : PANEL DISCUSSION PROF. RAIMAR SCHERER – TU DRESDEN, GERMANY

What are the challenges of open data standardisation for transport infrastructures?

SESSION 3 : PANEL DISCUSSION FRANK OPITZ - DEUTSCHE BAHN, GERMANY

What is the data interoperability strategy of a public client and what is its expectation for standardisation?

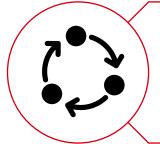


DB NETZE Q

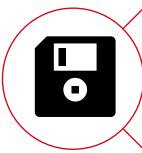
Deutsche Bahn

data interoperability and standardization

ل ک ک


38

Challenges of the DB group wide strategy "Starke Schiene" (Strong rail)



Too many breaches in the digital support of processes and workflows – internal and with external partners

Lack of consistent data availability, poor integration and linkability of existing data

Key **digitalization** trends

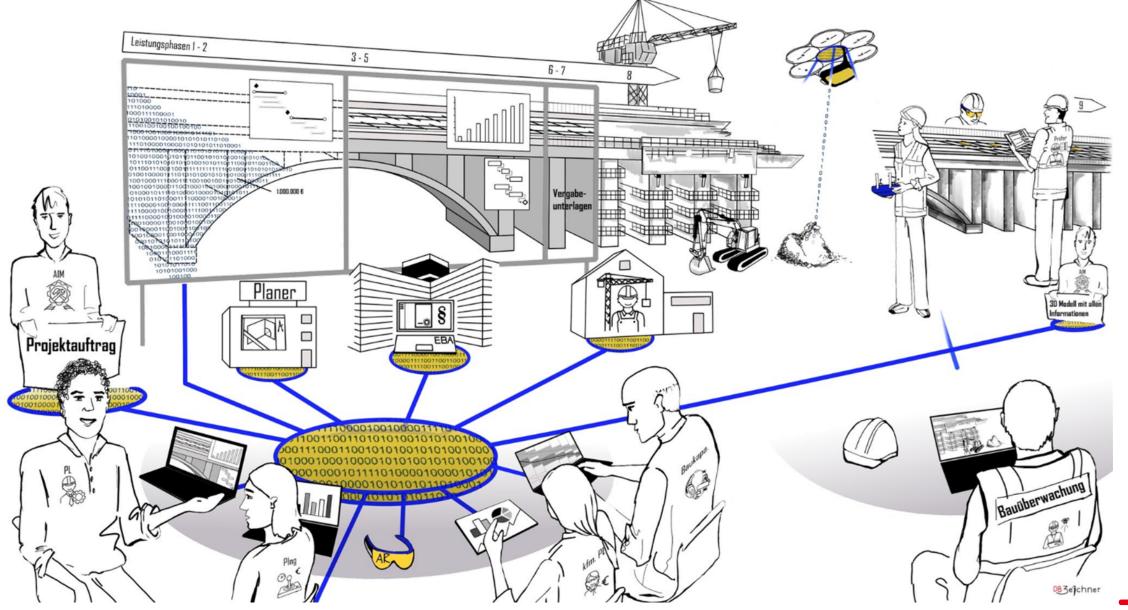
Construction Intelligence

Digital analysis methods for data-based control of planning and construction processes

Exemplary Technologies: AI, Big Data Analytics

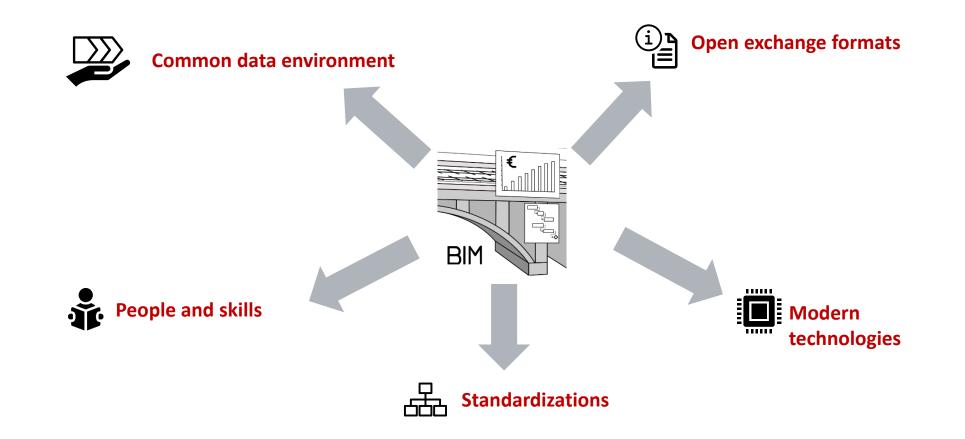
Virtual models with real-time data for simulation and planning

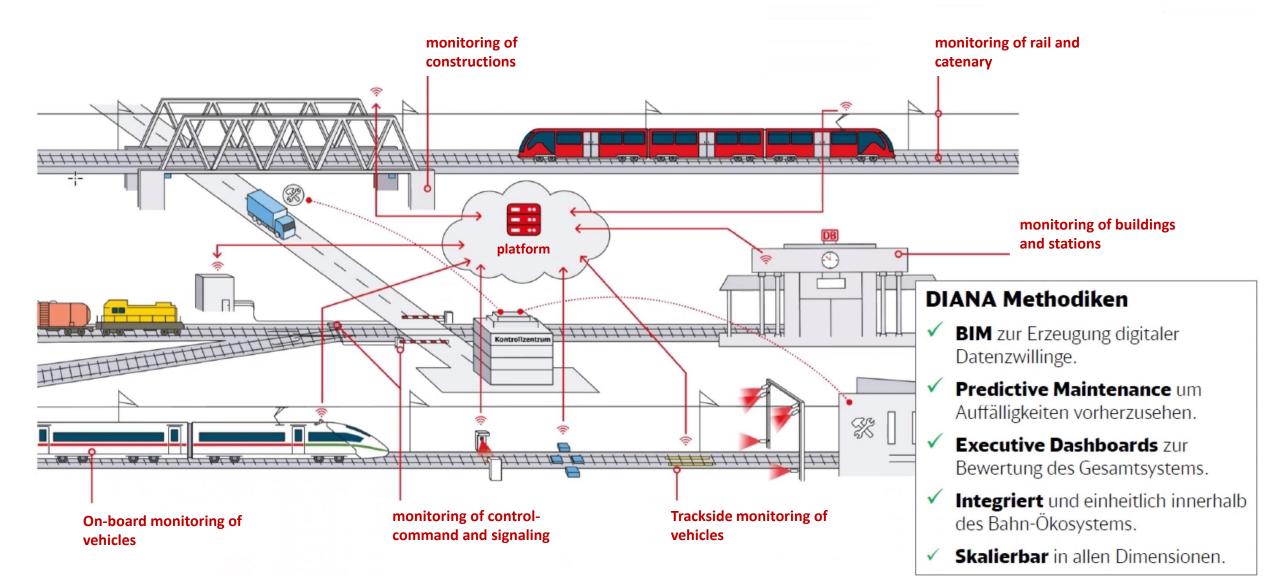
Exemplary Technologies: Sensors, Edge Computing



Digital technology on the construction site to generate valuable information and for efficient construction

Exemplary Technologies: Internet of Things (IoT), sensors, robotics


Vision of digital infrastructure projects


Implementation fundamentals

Example of use for acquiring and processing sensor data

SESSION 3 : PANEL DISCUSSION MICHEL BÖHMS - TNO, THE NETHERLANDS

What is the landscape of open standardisation of data in the built environment?

Pan-European Community of Practice towards standardisation for:

"Digitalisation in inspection, monitoring and maintenance of transport infrastructures"

IM-SAFE

The Data Standardization Landscape in the Built Environment

Michel Böhms (TNO)

) FAIR approach delivers sustainable solutions

WHY STANDARDIZE? THE BIGGER PICTURE

) Data should be FAIR!

Findable

- think Internet/WWW

- Accessible
-) Interoperable
- Reusable

- think standard data syntax (formats, direct access methods)

- think identification/authentication/authorisation

- think standard data semantics (schemas, ontologies, OTLs)
- but also: Right Data Quality:
- Relevant: Fit for Purpose & Timely
- Correct/Accurate, Consistent
- Complete, Precise,
- Flexible, Reproduceable
- Traceable
- Scalable

WHAT TO STANDARDIZE ISO 80000 VIEW

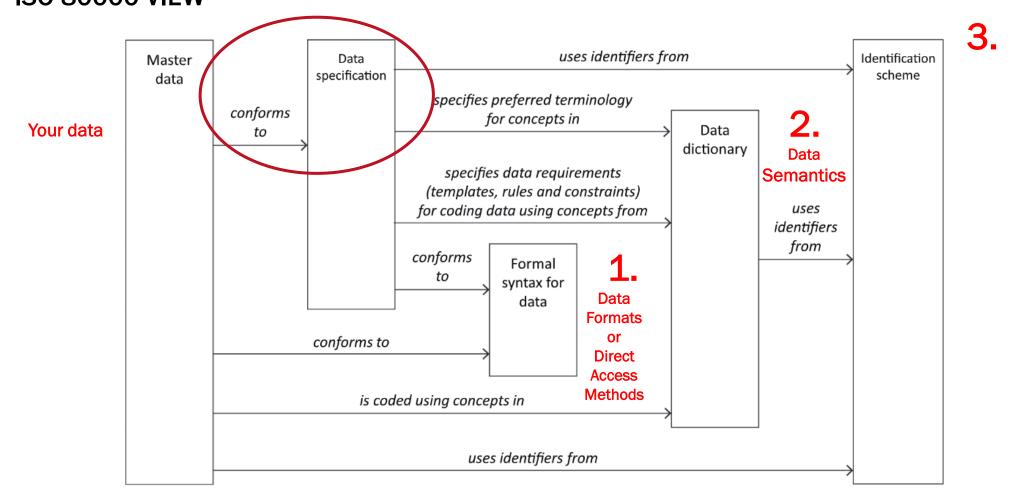


Figure 1 — Data architecture for master data as specified by the ISO 8000 series

HOW TO STANDARDIZE? MANY OPTIONS: IFC <> LD/SW

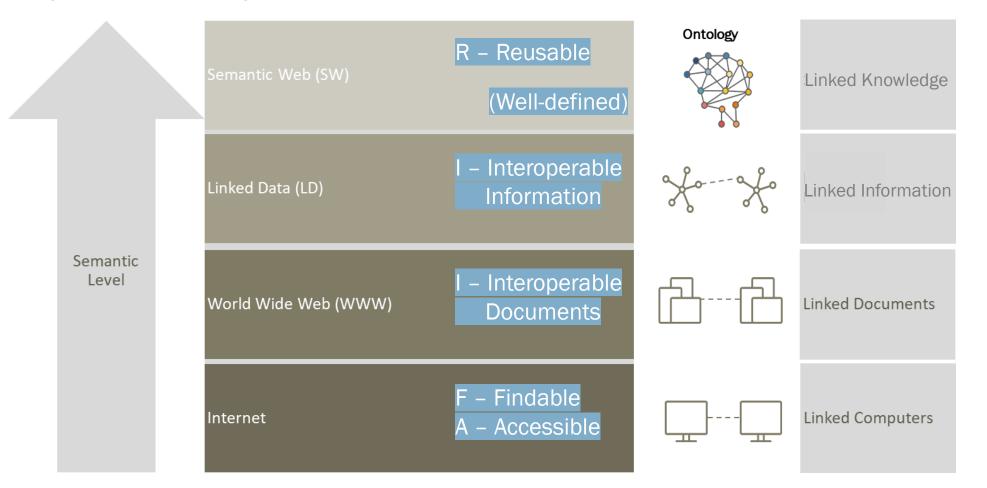
- 1. Data Formats / direct access methods
 - Graphical (UML)
 - ISO STEP Physical File Format (SPFF)
 - W3C XML / XQuery-XPath
 - W3C RDF-format (Turtle, RDF-XML, JSON-LD) / SPARQL
 - JSON / GraphQL
- 2. Data Semantics
 - EXPRESS schemas like IFC4.3RC2
 - UML diagrams
 - XSD schemas like InfraXML
 - > SKOS/RDFS/OWL/SHACL thesauri/ontologies/OTLs acc. to CENTC442 SML
 -) JSON Schemas like bSI bSDD experiment
- 3. Identification scheme
 - Local or global
 -) GUIDs like UUID, generated code
 - > URI strategy in case of web-based

ifc ^{uml} rdfs sperge	data exchang ison-ld rdf-xml ta alignme	idm graphd nt cde ontology graphd	
aim pimdid	Italizati	loneir ow	/1
step _{oti}	digital twin	brep SOC eif Id	
container rdf Dimik	visi fair jon vocabulary	dictionary nen2660-2	
ssot nta8035	concept geosparql _{turtle}	thesaurus relation	
built e	environm	ient ifc	

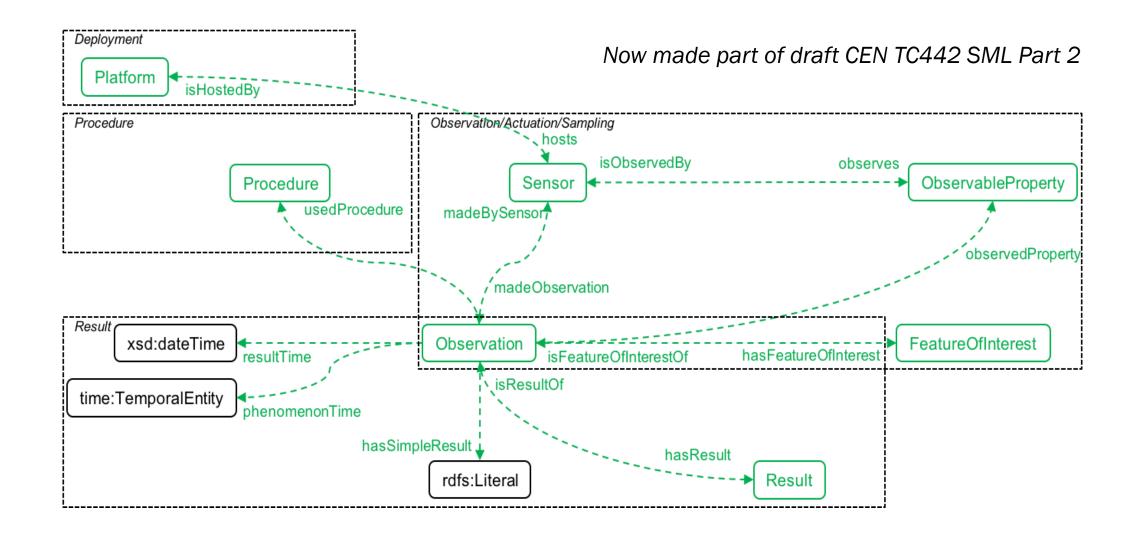
attribute

Combination == one "Technology"

- OMG model-driven
- ISO STEP & IFC
- W3C XML
- WebDev


"BIM meets OTL"

- W3C Linked Data/Semantic Web
- ... (too) many!


HOW TO STANDARDIZE?

ENABLING FAIR DATA VIA W3C LINKED DATA & SEMANTIC WEB TECHNOLOGY GENERIC (BIM, GIS, SE, IOT), POWERFUL & WEB-BASED

MEASUREMENTS ACCORDING TO W3C SSN/SOSA ONTOLOGY

Thank you! michel.bohms@tno.nl

IM-SAFE.EU

Standardization of data interoperability

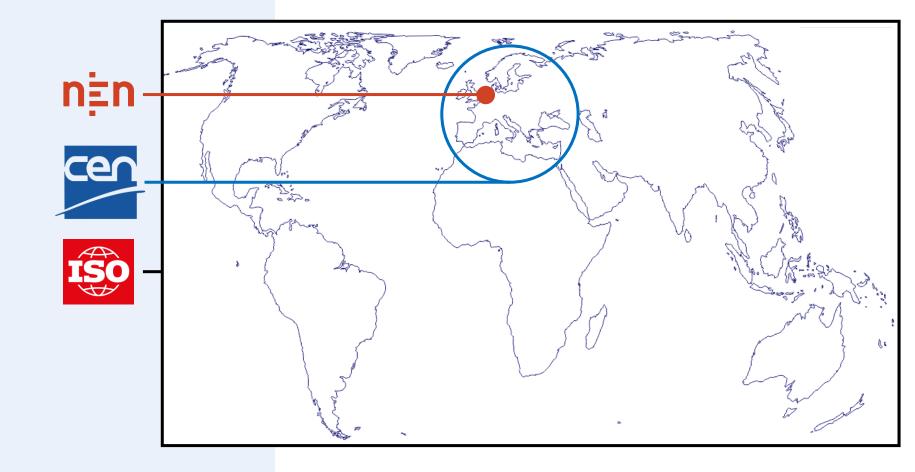
2022-02-24

Sanne Jansweijer

- Consultant ICT Standardization at NEN
- Secretariat NEN standards committee 381184 Data integration and interoperability
- <u>Sanne.Jansweijer@nen.nl</u>
- +31 15 2690499
- LinkedIn

The world of standardization

The Netherlands

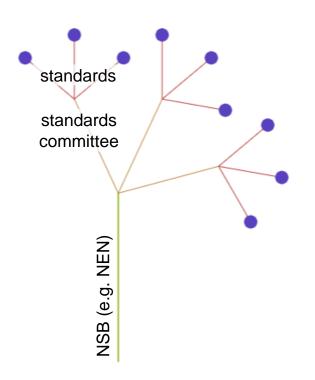

NEN Standards committees

Europe

• CEN and CENELEC

World

• ISO and IEC

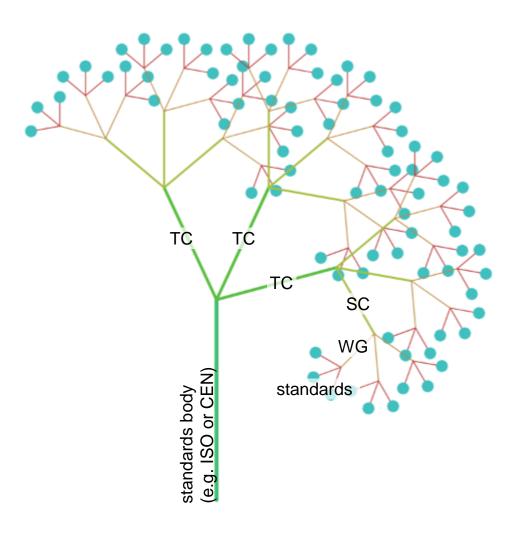

About NEN

NEN facilitates the creation of voluntary agreements between parties on products, services and processes

The world of standardization

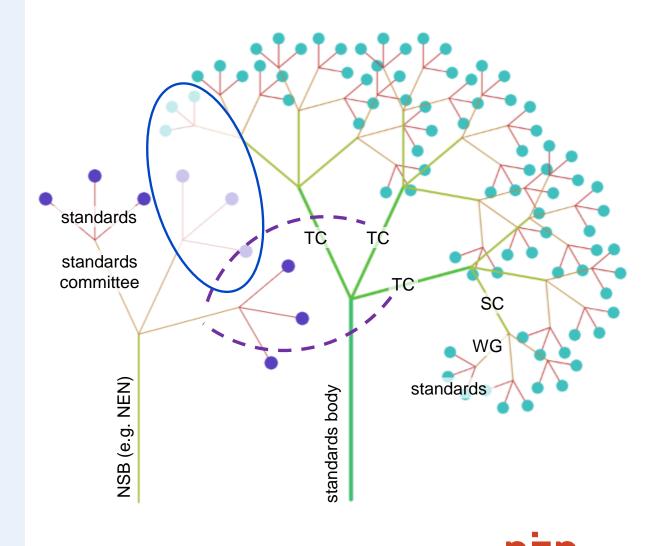
National structure

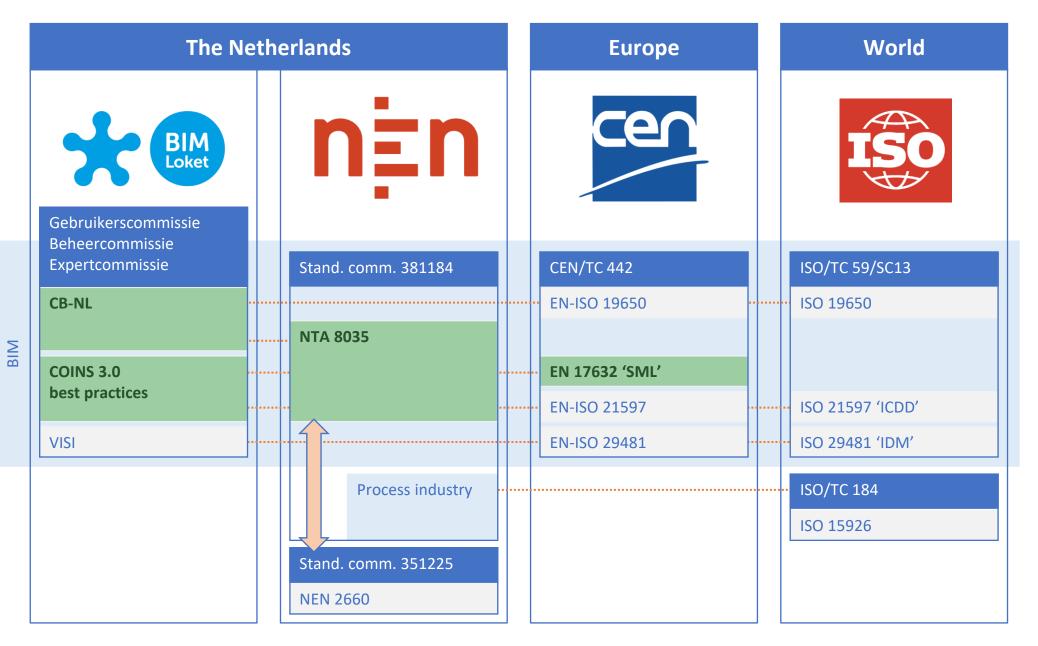
- National standards body (NSB), e.g. NEN, BSI, DIN
- Standards committee | normcommissie
- Standards | standaarden
- Development of standards on a national level



The world of standardization

International structure


- Standards body, e.g. ISO, IEC, CEN, CENELEC
- Technical committee (TC)
- Subcommittee (SC)
- Working group (WG)
- Standards



The world of standardization

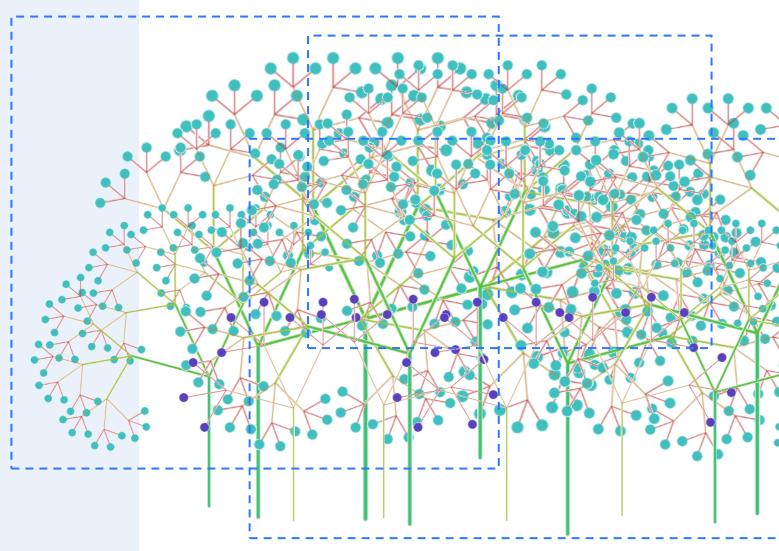
Participation

- Each national standards committee 'follows' the standardization activities of several international technical committees.
- Members of local standards committees take part in international working groups.
- Participate through your <u>national standards body</u>.

n‡n

Relevant technical committees (TCs)

Digital data interoperability


- <u>CEN/TC 442</u> Building Information Modelling
- <u>ISO/TC 184</u> Automation systems and integration
 - <u>SC 4</u> Industrial data
 - <u>SC 5</u> Interoperability, integration, and architectures for enterprise systems and automation applications
- <u>ISO/TC 59/SC 13</u> Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM)
- <u>ISO/TC 10</u> Technical product documentation
- ISO/TC 46 Information and documentation

- ISO/IEC JTC 1/SC 32 Data management and interchange
- ISO/IEC JTC 1/SC 41 IoT and Digital Twin
- ISO/IEC JTC 1/SC 42 Artificial Intelligence

Searching standards

- There is no meta site covering *all* existing standards; each site only covers a collection of standards.
- <u>StandICT</u> meta site for identifying ICT working groups as well as standards by topic.
- ISO search international standards
- IEC search international electrotechnical standards
- CEN CENELEC search European standards
- Search and purchase through the website of your local standards body, e.g. <u>NEN</u>

Browsing standards

- Browse standards via relevant technical committees
 - StandICT working group search engine
 - ISO TCs
 - <u>CEN TCs</u>
 - <u>IEC TCs</u> (electrotechnical standards)
 - <u>CENELEC TCs</u> (electrotechnical standards)

,	iso.org/technical-committees.html?s=BUILDI	NG					• 🛛	Δ		t
eiver nim NEN Connect - S	iea 🔋 ISO dir. part 1 🚦 ISO dir. part 2									
ISO		Standards	About us	News	Taking part	Store	Q)		≡м
	ECHNICAL COMMITTE	s ,	ILTER BY TEC		CTOP. PIU			NCTD		
			ILIEK DT IEC	INICAL SI	LCTOR: DUI		ND CO	NJIK	UCTION (2	(4) ^
				ALL SE	CTORS					
				FOOD /	AND AGRICULTU	IRE				
REFERENCE +	↓ TITLE			CHEMICALS						
ISO/TC 21	Equipment for fire protection and fir	e fighting		BUILDI	NG AND CONST	RUCTION				
ISO/TC 59	Buildings and civil engineering work	S		BUSIN	ESS MANAGEM	ENT AND	INNOVA	ATION		
ISO/TC 71	Concrete, reinforced concrete and p	re-stressed concr	ete	ENERG	Y					
ISO/TC 74	Cement and lime [STANDBY]			SUSTA	INABILITY AND	ENVIRON	MENT			
ISO/TC 77	Products in fibre reinforced cement	[STANDBY]		HEALTH	H, MEDICINE AN	D LABOR	ATORY	EQUIP	MENT	
ISO/TC 89	Wood-based panels			HORIZ	ONTAL SUBJECT	S				
ISO/TC 92	Fire safety			INFORM	MATION TECHNO	DLOGY, G	RAPHIC	S AND	PHOTOGR/	APHY
ISO/TC 96	Cranes			MECHA	NICAL ENGINE	ERING				
ISO/TC 98	Bases for design of structures			NON-M	IETALLIC MATER	IALS				
ISO/TC 136	Furniture	rniture F		ORES AND METALS						
ISO/TC 160	Glass in building			FREIGHT, PACKAGING AND DISTRIBUTION						
ISO/TC 162	Doors, windows and curtain walling			SECUR	ITY, SAFETY AN	D RISK				
ISO/TC 163	Thermal performance and energy us	a in tha built anu	kanmant	SERVIC	ES					
		e in the built env	nonment	SPECIA	L TECHNOLOGI	ES				
ISO/TC 165	Timber structures			TRANS	PORT					
ISO/TC 167	Steel and aluminium structures				working area	,			6	

Explore existing reports

- <u>IM-SAFE report on Actual and future context of</u> <u>transport infrastructure monitoring and maintenance</u> contains mentions of standards relevant to the project.
- <u>Rolling plan for ICT standardization</u> provides a unique bridge between EU policies and standardisation activities in the field of information and communication technologies (ICT).

nten NEN Connect - Sea 🚺 ISO dir. part 1 🚺 ISO dir. p	/collection/rolling-plan-ict-standardisation/rolling-plan-2021 art 2		२ 🦁 🔺	
ed joinup	Interoperable Europe	Interoperability Solutions	Sign in Get star	rted
INNOV	ATION FOR THE DIGITAL SINGLE MA			
• <u>E-P</u>	ROCUREMENT, PRE- AND POST-AWARD			
• <u>E-II</u>	<u>IVOICING</u>			
• <u>RE</u> T	AIL PAYMENTS			
• <u>PR</u>	SERVATION OF DIGITAL CINEMA			
• <u>FIN</u>	TECH AND REGTECH STANDARDISATION			
• <u>BLC</u>	OCKCHAIN AND DISTRIBUTED LEDGER TEC	HNOLOGIES		
SUSTA	INABLE GROWTH			
• <u>SM</u>	ART GRIDS AND SMART METERING			
	ART CITIES AND COMMUNITIES/ TECHNOL	OGIES AND SERVICES FOR SMART	AND	
	ICIENT ENERGY USE ENVIRONMENTAL IMPACT			
	ROPEAN ELECTRONIC TOLL SERVICE (EETS)			
	ELLIGENT TRANSPORT SYSTEMS-COOPERA		TED	
	BILITY (ITS-CCAM) AND ELECTRO-MOBILIT			
• DIG	ITISATION OF EUROPEAN INDUSTRY			
• <u>RO</u>	BOTICS AND AUTONOMOUS SYSTEMS			
• <u>co</u>	NSTRUCTION-BUILDING INFORMATION MO	DDELLING		
• <u>CO</u>	MMON INFORMATION SHARING ENVIRON	MENT (CISE) FOR THE EU MARITIN	<u>//E</u>	
DO	MAIN			
• <u>WA</u>	TER MANAGEMENT DIGITALISATION			
	<u>GLE EUROPEAN SKY</u>			
	PACE			
• <u>CIR</u>	CULAR ECONOMY			

More information

- Participate through your <u>national standards body</u>.
- For participation in NEN Standardization committees, please contact <u>Sanne Jansweijer</u>.

elkaar te communiceren, processen in te richten en informatie te structureren. Om data op de juiste manier in te

Daarvoor zijn normen nodig.

zetten, is het nodig dat deze gestructureerd wordt en dat datasets met elkaar kunnen communiceren en samenwerken. Liever direct contact?

Standard for progress

SESSION 3 : DISCUSSION WITH ONLINE AUDIENCE

- Received questions from the online audience:
 - Why should I participate in standardization? What's in it for me?
 - How can we create a quicker change process for codes and standards that are written based on "old" technology?
 - Which standard is available for storage and access of measurement data?
- More questions: ...

Please ask questions to our panellists via Chat in Zoom

AGENDA

Activities	Guest speakers and panellists				
Welcome and opening wordsObjective and agenda	Machteld de Kroon (TNO, NL) Rizal Sebastian (TNO, NL)				
 Session introduction Best practice example from INSITU, ES Short technical presentation by SACERTIS, IT Panel discussion & questions from online audience 	Isabelle Alovisi (SACERTIS, IT) René Schumann (HOCHTIEF ViCon, DE) Sara Cuerva Navas (FERROVIAL, ES) Sverre Kjetil Rød (Norwegian Public Road Authority, NO) Diego Allaix (TNO, NL)				
10-minute break					
 Session introduction Best practice example from IBM Research, CH Short technical presentation by IBM Research, CH Panel discussion & questions from online audience 	Ioana Giurgiu & Cristiano Malossi (IBM Research, CH) Meenagi Venkat (KNOWCE, IT) Arnwald Janssen (Rijkswaterstaat/Ministry of Infrastructure, NL)				
10-minute break					
 Session introduction Best practice example from TNO, NL & AEC3, DE Short technical presentation by AEC3, DE Panel discussion & questions from online audience 	Matthias Weise (AEC3, DE) Raimar Scherer (TU Dresden, DE) Frank Opitz (Deutsche Bahn, DE) Michel Böhms (TNO, NL) Sanne Jansweijer (NEN, NL)				
 EC policy initiatives in digitalization and transport infrastructure Concluding remarks 	Rafal Stanecki (European Commission, DG MOVE) Konstantinos Gkoumas (European Commission, JRC) Agnieszka Bigaj-van Vliet (TNO, NL)				
	 Welcome and opening words Objective and agenda Session introduction Best practice example from INSITU, ES Short technical presentation by SACERTIS, IT Panel discussion & questions from online audience eak Session introduction Best practice example from IBM Research, CH Short technical presentation by IBM Research, CH Short technical presentation by IBM Research, CH Panel discussion & questions from online audience eak Session introduction Best practice example from TNO, NL & AEC3, DE Short technical presentation by AEC3, DE 				

IM-SAFE - Horizon 2020 Coordination & Support Action

CLOSING SESSION AGENDA FOR 15:45 – 16:00

- Brief introduction of the panellists:
 - Rafal Stanecki (European Commission, DG MOVE)
 - Konstantinos Gkoumas (European Commission, JRC)
 - Agnieszka Bigaj-van Vliet (TNO, NL)

• Strategic reflections:

- EC policy initiatives in digitalization and for resilient, safe and performing of transport infrastructure. (Rafal Stanecki)
- Reflection on the discussed topics and the importance of digitalisation and data standardisation. (Konstantinos Gkoumas)
- Concluding remarks from the Project Coordinator of IM-SAFE Coordination & Support Action. (Agnieszka Bigaj-van Vliet)
- Closing words and thanks to all guest speakers, panellists and participants. (Rizal Sebastian)

CLOSING SESSION : PANEL DISCUSSION RAFAL STANECKI - EUROPEAN COMMISSION, DG MOVE)

Digitalisation of transport infrastructure

IM-SAFE Project – Symposium

Rafal Stanecki R&I DG MOVE

European Strategy for Data

A governance framework for data

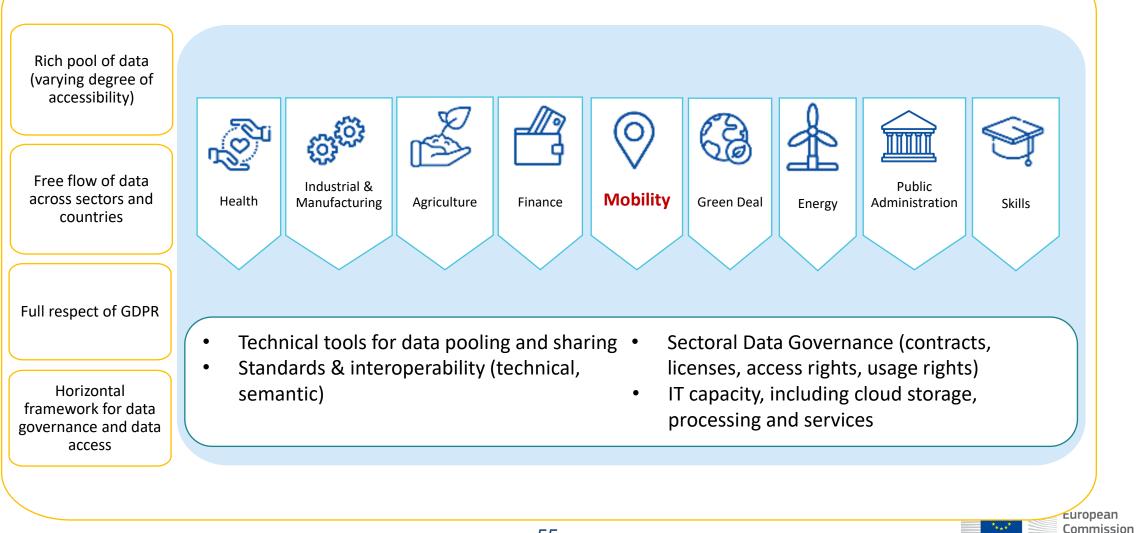
including a legislative framework for the governance of European data spaces and other cross- sectoral measures for data access and use

Enablers

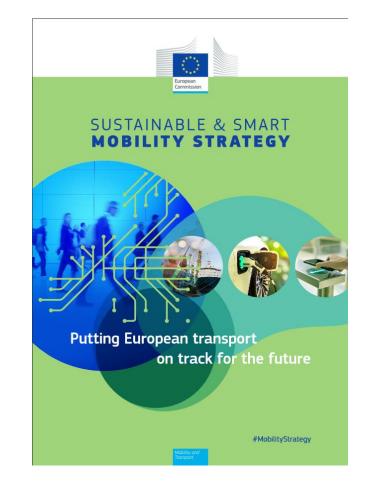
Investing in a High Impact Project on European data spaces and federated cloud infrastructures

Competences

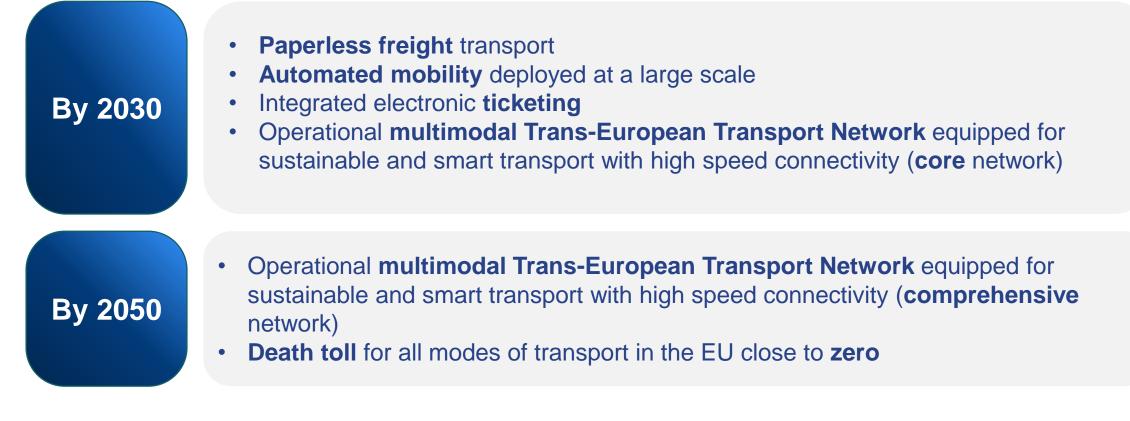
Empowering individuals, investing in digital skills & data literacy and in dedicated capacity building for SMEs.


Rollout of common European data spaces

in crucial economic sectors and domains of public interest, looking at data governance and practical arrangements.


Building a common European data space: a single market for data

Common European data spaces


Sustainable and Smart Mobility Strategy (2020)

- Sustainability: Green Deal calls for 90% reduction in GHG emissions from transport by 2050.
- *Digitalisation*: opportunity to make mobility smarter, more efficient and greener.
- *Resilience*: transport sector heavily affected by the COVID-19 pandemic. Need to support the recovery.

Mobility Strategy – milestones (selection)

"Smart" in the Strategy

Achieving seamless, safe and efficient connectivity

- offering a seamless multimodal experience
- supporting sustainable choices by taking advantage of digitalization & automation
- shaping the mobility of the future
- ensuring the right framework and enablers are in place

Main objectives of the TEN-T revision

General objectives

To make transport **greener** in view of reaching the climate neutrality targets by 2050

To facilitate **seamless and efficient** transport in order to better connect people and businesses all over Europe To increase the **resilience** of the TEN-T network to climate change and other natural or man-made disasters

To improve the efficiency of the **governance tools** of the TEN-T Regulation

Specific objectives

To provide the infrastructural basis for a **modal shift** to sustainable transport modes

To improve the **coherence and integration between the different layers** of the network including its **maritime links** To adapt and **digitalise** the infrastructure of all modes to limit congestion and improve safety and security and to better address **needs of passengers and freight** (services, safety)

To reinforce the **role of the urban nodes** as to enable seamless passenger flows between the TEN-T and local networks To improve the **preparedness and resilience** of infrastructure, including its maintenance To increase **coherence and efficiency** between EU and national policies as well as between the different tools (CNC vs. RFC)

Provisions for smart and resilient transport in TEN-T rev.

Article 42: ICT systems for transport

 other dimensions of data sharing covered, including optimisation of supply chains, Internet of Things (IoT) devices, etc

Article 44: new technologies and innovation

• new element of cyber-security

Article 45: safe and secure infrastructure

 firm requirement to ensure that transport infrastructure provides for safe and secure passenger and freight movements

Article 48: resilience of infrastructure

 objective: to maintain the infrastructure in a way that it provides the same level of service and safety during its lifetime

Article 48: maintenance and project life cycle

Thank you

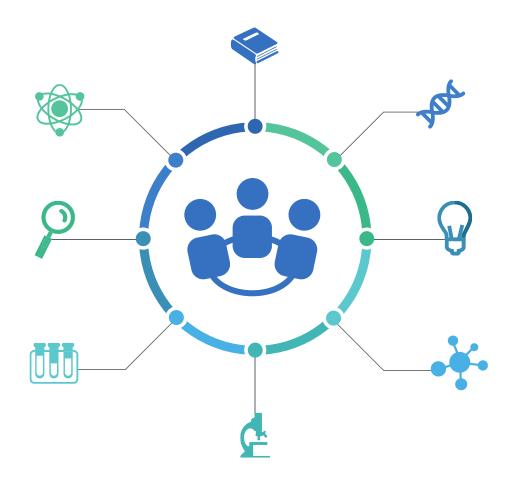
CLOSING SESSION : PANEL DISCUSSION KONSTANTINOS GKOUMAS - EUROPEAN COMMISSION, JRC

JRC supporting the digitalisation of transport infrastructure

The 4th Pan European CoP Forum – IM-SAFE Symposium

Konstantinos Gkoumas

European Commission, Joint Research Centre


JRC mission

As the **in-house science and knowledge service of the Commission** our mission is to support EU policies with **independent evidence** throughout the whole policy cycle, from anticipation and development, through implementation and monitoring.

The need for evidence to inform policy

- Technical knowledge and scientific evidence can be produced at the ELSA lab.
- Knowledge management to monitor technological progress and assess enablers and bottlenecks.
- Broad experience in standardisation processes.
- JRC stands at the forefront of the European policy-making support towards the incorporation of data-driven SHM.

JRC supporting innovation & compliance

The European Laboratory for Structural Assessment (ELSA)

Standardisation & the Eurocodes

	\odot		
	European Commission		

JRC TECHNICAL REPORTS

Standardisation needs for the design of underground structures

Authors: A. Athanasopoulou, A. Bezuijen, W. Bogusz, D. Bournas, N. Brandtner A. Breurese, U. Burbaum, S. Dimovs R. Frank, H. Ganz, U. Grunicke, H. Jung, A. Lewandowska, G. Nuijten A. Pecker, S. Posmas, K. Roesiler, A. Sclotti, N.L. Sousa, H. Stille, D. Subrin

Editors: A. Athanasopoulou, W. Bogusz, D. Bournas, S. Dimova, R. Frank, M.L. Sousa, A. Pinto

2019

Knowledge management

JRC SCIENCE FOR POLICY REPORT

Research and innovation in bridge maintenance, inspection and monitoring

A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS)

Gkournas, K., Marques Dos Santos, F.L., van Balen, M., Tsakalidis, A., Ortega Hortelano, A., Grosso, M., Haq, G., Pekár, F. 2019

Recent research on bridge monitoring and maintenance from H2020 projects

Technology	Sub-technologies	Project(s)
Air drones for inspection	Artificial Intelligence (AI), UAVs, GNSS Computer vision, Laser Scan, Ultrasonic sensors	AERIAL-CORE, AEROARMS, AEROBI, Bridgescan
Guided Wave-based monitoring of fibre reinforced polymer (FRP) composites in bridges	5	BriFace
Bridge concrete scanner using ultrasounds		COBRI
Autonomous ground robotic vehicle for road maintenance and upgrade	AI, 3D Scanner, UAVs	HERON
Real-time acoustic monitoring sensor	AI, Internet of Things (IoT)	RTExd
Monitoring and decision support tools	Big Data, BIM, GIS	SAFE-10-T, SAFEWAY, PANOPTIS
Mobile dielectric-elastomer strain sensor	Photovoltaic panel	SENSKIN
Smart Skin Sensor System for remote SHM		SmartPatch
360-degree field camera connected to a Robotic Station for monitoring structural integrity	Pattern recognition, Digital Imaging Correlation (DIC)	VG360

Source: TRIMIS

Expectations and challenges for the digitalisation of transport infrastructure

- New and emerging digital technologies can revolutionize the way structures and transport infrastructures are designed, build and maintained. Examples: digital twins, UAVs, IoT, AI, machine learning, vision based monitoring, indirect monitoring etc.
- For new technologies, interdisciplinary teams needed to break the silos. Linkage/ transition between disciplines is necessary.
- Standardisation, data interoperability and security are paramount.
- Digitalization provides different levers to enable the sustainability transition.
- Technologies should be supported by policy and implementation actions at several levels.

Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Eu Science Hub

konstantinos.gkoumas@ec.europa.eu

Thank you

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

CLOSING SESSION : PANEL DISCUSSION AGNIESZKA BIGAJ-VAN VLIET - TNO, THE NETHERLANDS

Concluding remarks from the Project Coordinator of IM-SAFE

- All participants
- Presenters and panellists
- European Commission officers (Rafal, Konstantinos)
- TNO colleagues (Machteld, Agnieszka, Diego, Michel)
- Elna Minderman from CROW the symposium organizer

Pan-European Community of Practice towards standardisation for:

"Digitalisation in inspection, monitoring and maintenance of transport infrastructures"

IM-SAFE

Thank you for your participation!

For further questions:

info@im-safe-project.eu

