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Preface 

 
This deliverable is part of the H2020 CSA IM-SAFE project and is the outcome of the fourth task of 
work package 4 (Digitalisation as enabling technology, task 4.4: Data analytics and artificial intelli-
gence). It will help to set the basis of the proposal for the mandate to the European Committee for 
Standardization (CEN). 
 
Task leader:  IBM Research GmbH (IBM) 
Contributors:  MOSTOSTAL WARSZAWA S A (MOSTOSTAL) 
   
In WP4, the relation with future standards in monitoring with the open IT standards is given, together 
with the data platforms available to manage different monitoring information and the data analytic tech-
nologies needed for processing those data. 
This document provides a review of particular data analytics and artificial intelligence technologies, 
including typical workflows for data preparation and model building and deployment, as well as model 
adoption in the wild. Then an insight on how these workflows have been used in three insightful real 
scenarios is given. 
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1 Problem statement 

1.1 Introduction 

While artificial intelligence is an incredibly powerful tool, in some industries it is still in a devel-
opmental stage. There is still exploration to be done regarding what applications are best 
suited for its use and refining the involved processes and workflows. However, it is already 
clear that its impact will be significant, in the way planning and maintenance will be done in 
the future. Every form of artificial intelligence, including machine learning, needs data to ingest. 
Today’s machine learning tools leverage algorithms to parse and understand ingested data, 
allowing them to find trends, patterns, and other insights of value. These algorithms act as 
guidelines, essentially telling the system where to go, what to look for, and what to do with that 
information. This is relevant because those algorithms, or guidelines, need to be established 
and optimized to empower artificial intelligence and machine learning technologies. In civil 
engineering, they will be applied in various ways to complete planning, construction, and sim-
ilar tasks. 

Civil engineering projects call for a huge selection of tools, heavy machines, and expensive 
materials. Managing these assets is a challenging task, both during working hours and outside 
of them, as well. Smart asset tracking can help organize projects by allowing workers to see 
what is currently in use, and what is available. It can facilitate proper project planning and 
management strategies. It can also be used to discern performance, progress, and other fac-
tors, remotely by team leaders. 

Machine learning technologies are also able to process massive swarms of data in a relatively 
short period. It also allows them to discover hidden trends, patterns, and insights, as well as 
make accurate predictions through the analysis of historic and current information. In civil en-
gineering, this could potentially help discover and create new solutions to complex problems. 

Risk mitigation involves analyzing the site of construction project for examples, the surround-
ing environment, external conditions like weather, hazards, worker safety, and much more. 
But because there is so much to consider, measure, and plan for, mistakes can be made and 
details can be missed rather easily. A machine learning could use smart technologies and 
contextual data to help with planning, risk mitigation and safety, by prioritizing immediate ac-
tions and assisting experts in assessing risks. 

It is clear that civil engineering and construction are changing, thanks to generative and data-
oriented design techniques, real-time asset management, and smarter risk mitigation and job 
site safety. New discoveries and avenues are explored every day, which shows the incredible 
promise of machine learning for engineers and development applications. 

1.2 Objectives of the deliverable 

This deliverable addresses several use case scenarios and how artificial intelligence, and 
machine learning technologies is used to provide relevant value and capabilities in the civil 
engineering and construction domains. 

Drawing from these use case scenarios, the deliverable describes the typical machine learning 
flows and stages, and relevant techniques to be used at every stage. The specific aspects 
addressed are as follows: 



Associated with document Ref. Ares(2020)3731189 - 15/07/2020 

 

Page | 9  

 This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 958171. © 2021  

IM-SAFE-Project | TNO, The Netherlands, All right reserved | 
 

• Describing the necessary steps for data preparation, especially in assisting the model 
developer in selecting suitable data subsets through selection and manipulation either 
visually or using program code of the dataset, assisting with labeling efforts, as well as 
exploration and validation of the selected subsets; 

• Describing the model development cycle, from understanding use case requirements 
to selecting appropriate machine learning models, training, evaluating, deploying and 
monitoring their performance in production; 

• Defining the dimensions of model adoption in real world scenarios, from combining 
their findings and predictions with models of physical assets, to aspects revolving 
around explainability, fairness and robustness. 

1.3 Content 

The present report is divided in seven different chapters. In this section, a short description of 
each of them is provided. 
Chapter 2 defines data analytics and artificial intelligence general workflows and sets the stage 
for the following chapters. Chapter 3 provides relevant guidelines for data preparation, drawn 
from the use case scenarios included in this deliverable. More specifically, it describes the 
purpose of data exploration, processing, version control and quality checks, as well as as-
sisted labeling, feature extraction and selection, provides recommendations on how to conduct 
these stages and what relevant tools and techniques can be used. Chapter 4 discusses the 
steps of model development, including how to select appropriate models for a use case’s re-
quirements, how to train, evaluate, deploy and monitor such models successfully. Chapter 5 
defines what model adoption in the real world means around several dimensions. 
Chapter 6 describes a real world use case for automated visual inspection of civil infrastruc-
tures, in particular bridges. This use case revolves around the need to detect fine-grained 
defects in such structures from high-resolution images acquired with drone technology and 
processed with support from advanced artificial intelligence models.  
Then, Chapter 7 describes another relevant use case for the continuous monitoring of event 
streams and sensor metric for the diagnosis and management of wind turbines, through anom-
aly detection and forecasting machine learning models. 
Chapter 8 covers a third use case, for applying automatic penalties on overloaded vehicles by 
using intelligent neural weights in a motion system with high accuracy, and is followed by the 
list of references (Chapter 9). 
 



Associated with document Ref. Ares(2020)3731189 - 15/07/2020 

 

Page | 10  

 This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 958171. © 2021  

IM-SAFE-Project | TNO, The Netherlands, All right reserved | 
 

2 Artificial intelligence and machine learning workflows 

Artificial intelligence and machine learning workflows are sequences of tasks that run subse-
quently one after another in any machine learning process, independent of data type, learn-
ing task or use case. A typical workflow (Figure 2.1) consists of the following phases: 

• Data collection 

• Data preparation 

• Model building 

• Model deployment 

 

Figure 2.1 - AI / ML workflows 

The first step in creating successful machine learning models and workflows is to understand 
the problem to be solved, characterize it and elicitate all the required knowledge from domain 
experts to help in collecting the relevant data and understanding the requirements of the use 
case. Different relevant independent variables and dependent variables need to be clearly iden-
tified by the domain expert. Independent variables include signals, control factors and noise 
factors while dependent variables represent the model response. Signals are stimuli required 
for fulfilling the model functionality. For example, in an automated visual inspection detection 
and segmentation model for bridges, signal is mainly the bridge picture taken by a pre-cali-
brated camera mounted on a drone during an inspection flight. Control factors are design pa-
rameters that can be controlled during data collection process and after deploying the model. 
Controlled factors may include camera resolution, pan, zoom, focus, sampling rate, color mode, 
distance to bridge, and so on. Noise factors influence the design but are controllable only during 
data collection process and are not controllable after deploying the model. The noise factors 
may include, but not limited to, scale changes, lightning conditions (illumination, shadows and 
reflectance), weather conditions, etc. Response is the primary intended functional output of the 
model. In this example, the output is the detection of defects in a bridge structure and the 
likelihood they present a level of risk that requires immediate repair and maintenance action. 
Finally, error states represent failure modes or effect of failure as defined by the end-user when 
using the predictive model. In this case, error states can be falsely detected defects (false pos-
itives) or missed defects (false negatives). 
 
The understanding of each of these components (signal, control factors, noise factors, model 
response and error states) provides relevant guidance for every phase of the machine learning 
workflow: 

• Under which conditions and when to collect data; 

• What equipment to use for data collection; 
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• How much data to collect; 

• How to clean and process the data; 

• How to extract or select features from the data; 

• Are labels needed for the learning task? If yes, how and how much data should be 
labeled; 

• How to ensure data quality prior to model training; 

• What learning model is most appropriate for the use case; 

• What are the model alternatives and which to select; 

• How to train, validate and evaluate the selected model; 

• Where and how to deploy the model; 

• Which techniques are most appropriate for monitoring and updating model and data; 

• When to trigger updating and re-training of the data and model. 

In rest of this document an overview of data preparation, model development and adoption in 
the real-world will be provided, detailing relevant stages and techniques. 
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3 Data preparation 

Since AI models are built and learned from data, the first step in building a model is data prep-
aration — the process of extracting inputs to the model from data. There are a number of tools 
to help data scientists source data, transform data, add labels to datasets and apply quality 
checks. The data preparation phase is used to turn raw data into model input features used to 
train the model. Features are transformations on the cleaned data that provide the actual model 
inputs.  
 
In the early stages of the pipeline, raw data is sourced across different data stores and lakes 
in an organization. The next stage involves data processing to clean, transform and extract 
features to generate consistent inputs in the feature selection stage.  The data preparation 
stage involves a number of steps: sourcing data, ensuring completeness, adding labels, and 
data transformations to generate features, as well as performing data quality checks. 

3.1 Data exploration and processing 

Data exploration and processing is key to any machine learning process. Typically, the first 
phase is to assess quality of the data and develop a deep understanding of it. For instance, in 
use cases around automated visual inspection, which involve analyzing high-resolution im-
ages, a few common data problems to investigate during the data exploration phase and prior 
to model training include: 

• Image dimensions and aspect ratios, in particular when dealing with extreme values; 

• Labels composition, such as imbalance, bounding box sizes, aspect ratios for small 
objects; 

• Data preparation and modeling approaches that are not specifically suitable for custom 
datasets, which tend to be significantly different than typical benchmark datasets such 
as COCO. 

With respect to image dimensions and aspect ratios, most datasets would typically fall under 
the following categories: 

• Uniformly distributed where most samples have the same dimensions – it is important 
to decide whether there is a need for resizing the samples and by how much, which 
depends on object area, size and aspect ratios. Resizing is particularly important for 
large images (over 4K+) which impose the problem of fitting them on GPUs due to 
memory constraints. An additional option to resizing is to train deep learning models 
in image patches rather than on the entire images themselves. 

• Bimodal distribution where most images are in the aspect ratio range (0.7 – 1.5), similar 
to the COCO [19] dataset – A resizing operation through padding is generally recom-
mended in this case. 

• Extremely skewed datasets (wide images mixed with narrow ones) – Padding is typi-
cally excessive as it will generate a much too large dataset. However, sampling 
batches based on the aspect ratio is recommended. The mm detection framework, 
which is very popular amongst image processing frameworks, provides this function-
ality out of the box based on aspect ratios. 

With respect to labels composition, it is important to know how their sizes and aspect ratios 
are distributed, especially since most models work well on benchmark datasets, but may not 
perform well on real-world data (which follows different distributions). For instance, if the size 
of the object to detect is very small, but enlarging the images would increase memory footprint 
and slow down the model training, an option is to apply a crop-size approach. On the other 
hand, if objects to be detected are very large, this is not usually problematic from a modeling 
perspective, but it is likely that classes with larger objects are underrepresented in the dataset. 
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Most of the time, the average area of the objects in a given class will be inversely proportional 
to their count. 
 
Class imbalances typically pose a problem for object detection and segmentation tasks. When 
considering the problem of image classification, it is easy to oversample or downsample the 
dataset and control each class distribution to the model’s loss. However, when datasets con-
tain co-occurring classes, this becomes more challenging, since once resampling at the whole 
image level is started, multiple classes will be upsampled at the same time (not just one class). 
 
Once data exploration is done, an integral part of any machine learning-based pipeline is to 
preprocess and augment data, as well as to select representative subsets of data in order to 
boost the model’s training performance and in case large volumes of data are available.  
 
Data augmentation is an essential and widely used regularization technique for a variety of 
tasks, including detection, segmentation and classification. Its purpose is to increase the size 
of the dataset by applying synthetic transformations to the existing samples. While for simple 
image classification, these transformations are applied only to the source images, in the case 
of more complex tasks, like detection and segmentation, the same set of transformations 
needs to be applied to the target as well (bounding boxes for detection and masks for seg-
mentation). Traditional transformations that require both a source and target transform in-
clude: 

• Affine transformations 

• Cropping 

• Rotation 

• Distortions 

• Scaling 

• Changes to contrast or brightness 

• Color jittering 

• Etc. 

All of the above transformations are supported in packages like albumentations, or in frame-
works like OpenCV [20], PyTorch [21] or Tensorflow [22], to name a few. Full-fledged systems 
that provide already implemented pipelines for exploration, preprocessing and augmentation 
of data include Superb AI [23], databricks [24], Neptune AI [25] and others. 
 
More advanced techniques for data augmentation can also be used, such as populating rain 
effect, sun flare or even adversarial noise. As a result of appropriate data augmentation, the 
performance of a deep learning model is expected to become more robust and accurate. In 
contrast to augmentations that encode invariances to data transformations, there also exists 
a class of augmentations that mix the information contains in different samples with appropri-
ate changes to ground truth labels. A classic example is the mixup data augmentation [26] 
method which creates new data points for free from convex combinations of the input pixels 
and the output labels. There have been adaptations of mixup such as CutMix [27] that pastes 
rectangular crops of an image instead of mixing all pixels. The Mosaic data augmentation 
method is related to CutMix in the sense that one creates a new compound image that is a 
rectangular grid of multiple individual images along with their ground truths. Copy-Paste [28] 
combines information from multiple images in an object-aware manner by copying instances 
of objects from one image and paste them onto another image. Copy-Paste is akin to mixup 
and CutMix but only copying the exact pixels corresponding to an object as opposed to all 
pixels in the object’s bounding box.  
 
The selection of a subset of most representative samples from the initial dataset is necessary 
when large volumes of data are available or when class imbalance is present. The objective 
is to subsequently train a deep learning model with less, but more information-carrying data, 
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in order to boost its performance. First, it is essential to understand the data at hand from the 
perspective of its underlying distribution, where there is redundant or biased data, which are 
the minority and majority classes, and whether edge cases are sufficiently represented. Such 
questions refer to common data challenges including the long-tail distribution problem (where 
particular categories or classes are less represented than others) and the existence of false 
positives and false negatives (where model predictions or labels falsely relate to or fail to relate 
a sample to a certain object or class). 
 
An initial approach to sampling raw data is using unsupervised learning. It identifies clusters 
of similar samples by calculating the distance between them and allows for a simpler visuali-
zation and understanding of the dataset by reducing the dimensionality into 2D scatter plots. 
Several well-known can be used, such as UMAP [29], t-SNE [30] or PCA [31]. 
 
More sophisticated approaches include diversity-based and uncertainty-based sampling. Both 
types of methods are based on the metadata of the dataset, which should capture the require-
ments of what is a representative subset. These requirements are subject to a variety of pa-
rameters are that are specific to the task, industry, models used and resources. Diversity-
based sampling chooses, based on distance between the samples in an embedding space, a 
diverse dataset that should cover all possible scenarios, to ensure that the model is even 
trained on edge and corner cases. Samples from different clusters are chosen using a diver-
sifying algorithm, thereby ensuring the representation of different types of samples. 
 
Uncertainty-based sampling is useful when a model shows good performance on some sam-
ples, but struggles on others. For instance, false positives and false negatives refer to situa-
tions where the model falsely assumes that a sample contains an object and when the model 
incorrectly assumes that a sample does not contain an object when in reality it does. There-
fore, the model should be trained with challenging learning data, namely the data it struggles 
with from which it can subsequently improve. Through uncertainty-based sampling, the data 
where the model is uncertain is added to the training set. This creates a type of feedback loop, 
called active learning, where the output of the model (its performance) gives recommendations 
regarding its input (its training set). 
 
In combination, metadata-based, diversity-based, and uncertainty-based sampling allow for 
an optimal selection of data. It enables uncertain data to be included within the training set 
while ensuring that similar samples are left out and metadata targets are met. In consequence, 
model performance is considerably improved. 

3.2 Data version control 

Keeping track of all the data used for models and experiments is essential and involved more 
than just managing and tracking files. The goal of a data version control system is to allow 
users to have unified data sets with a robust repository behind for all experiments. Additionally, 
it aims to systematize data versions, improve workflows and minimize the risk of occurring 
errors. Therefore, they ensure reproducibility, traceability and lineage of data, model and code. 

Data versioning can follow various strategies, but at its core, it involves tracking the origins 
and changes over the history of data. These changes come in processing steps in a machine 
learning pipeline, such as data acquisition, merging, cleaning, transformation, learning and 
deployment. Some of the most used strategies employed are as follows: 

• Caching copies of datasets – Every change to a dataset yields storing the new copy of 
the entire dataset. This strategy provides easy access to individual versions of data, 
but the memory constraint of small changes to big data require additional storage. With 
a name convention for files in given directory, this strategy is readily implementable. 
One tool that employs this strategy is Git [32]. 
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• Storing the difference between datasets – It only stores changes between versions 
due to the memory constrain previously discussed. These differences are stored in 
patches, therefore restoring to a specific version rewuires adding all the patches to the 
dataset. Mercurial [33] uses such a strategy. 

• Storing the changes relative to individual records – This strategy is implemented bu 
having individual history per record documents that track changes on each record. The 
implementation is by creating a separate file for each record, which combines to form 
an inidividual history per record directory that tracks all changes on individual parts. 
Amazon S3 [34] buckets use this particular strategy. 

• Offsets in append-only datasets – Existing data is immutable and changes with new 
data are required to be appended to existing data. The file size and its offset asre used 
to track changes. This strategy, specifically used in Apache Kafka [35], is mainly 
addressed for append-only data such as event streams or log files. 

The choice of strategy depends on the size, structure and frequency of updating the data.  

In AI-powered projects which rapidly evolve through frequent experimentations and iteration, 
tracking model history is essential to understand and improve the performance of such 
developed models. Model versioning involves tracking of model inputs, hyperparameters, 
algorithm choice and architecture. These models are typically large binary data files. Finding 
the best model is an iterative process and in most cases, small changes to hyperparameters 
or data lead to different models. Tracking the version of such models can be done wth copy 
strategies supported in Git or DVC [36]. 

Further, tracking different stages of a pipeline, such as data preprocessinf, feature extraction 
and engineering, model training and hyperparameter optimization is essential as well. These 
can be captured as script and configuration files which can be versioned in the same manner 
as traditional source code. Tracking frameworks and library versions is also important in order 
to ensure reproducibility and avoid floating versions for dependencies. Package managers like 
pip support such versioning of dependencies. In addition, code and dependencies can also 
be packaged in virtual execution environments to ensure that environmental changes are 
tracked. Docker [37] is such an example. 

Finally, experiments are various runs under different conditions, such as systematically vary-
ing variables and parameters. Additional focus here is on comparing results and visualizing 
experiment results. Some experiments are suitable withing a notebook (such as Jupyter note-
books), while other times more precise tracking is helpful, notably when exploring model op-
tions and their interactions. In the latter case, frameworks like TensorBoard [38] or Neptune 
AI provide an excellent set of capabilities that allow users to track their experiments in an 
interactive manner. 

3.3 Feature selection and extraction 

In many use cases, the data collected and prepared for a machine learning task is highly 
dimensional, namely it contains a large volume of variables that represent it. Performing fea-
ture selection and extraction in the context of preparing the data to use as input into a model 
has the objective of reducing the number of input variables and has a number of advantages: 

• Improved model performance 

• Reducing risk of model overfitting 

• Faster training 

• Improved data visualization 

• Increased model explainability 
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3.3.1 Feature selection 

Feature selection aims instead to rank the importance of the existing features in the dataset 
and discard less important ones. There are numerous techniques that can be employed for 
feature selection depending on the type of learning task and model. 
 
Feature importance. Tree type of models, such as decision trees or random forest, can be used 
to rank the importance of the features used as input to a model. By providing this type or feature 
ranking, a user can understand how a model makes its predictions and which features have 
contributed to those predictions. Not only does it allow to remove features which are not bring-
ing any benefit to the model, but it increases the model’s explainability relative to its decision-
making process. 

 
Recursive feature elimination. This technique takes as input the instance of a machine learn-
ing model and the final desired number of features to use. It then recursively reduces the 
number of features to use by ranking them using the model’s accuracy as a metric. Iterating 
through the number of input features as an input variable, it is possible to find out the optimal 
number of features a model needs by keeping track of its accuracy in every iteration. 

 
Correlation matrix analysis. A traditional approach is to inspect the correlation of all input 
features to the output labels. By using Pearson correlation [39], for instance, the returned co-
efficient values will provide an indication of no correlation, positive or negative correlation: 

• If the correlation between two features is 0, this means that changing one of these 
two features will not affect the other, therefore there is no correlation detected; 

• If the correlation is greater than 0 (max is 1), then the features are positively corre-
lated and therefore the increase in values of one feature will determine an increase in 
values of the other feature; 

• If the correlation is lower than 0 (min is -1), then the features are negatively corre-
lated and therefore an increase in values of one feature will determine a decrease in 
values of the other feature. 

Univariate selection. This technique is a statistical method used to select the features which 
have the strongest relationship to the output labels. A user can decide which metrics to used 
to evaluate the features and the number of K best features to be retained. If the task at hand 
is classification, then common scoring functions are chi2, f_classif, mutual_info_classif, 
whereas for regression the typical functions are f_regression and mutual_info_regression. 
 
Lasso regression. Regularization techniques are commonly used to penalize a model’s pa-
rameters in an attempt to avoid that a models tried to resemble too closely the input data. In 
this way, the model can be simplified and is typically used when faced with overfitting prob-
lems. One type of regularization is Lasso (L1) regression [40]. When using Lasso regression, 
the coefficients of the input features are diminished in value if they are not positively contrib-
uting to the model training. Therefore, it is possible that some features are automatically dis-
carded by assigning them coefficients equal to zero. 
 

3.3.2 Feature extraction 

Feature extraction aims to reduce the number of features in a dataset by creating new features 
from the existing ones and then discarding the original features. These new reduced set of 
features should then be able to summarize most of the information contained in the original 
set of features. In this way, a summarized version of the original features can be created from 
a combination of the original set. 
 
Principal component analysis (PCA). PCA is a linear dimensionality reduction technique which 
takes as input the original data and tries to find a combination of the input features that bets 
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summarized the original data distribution. The objective is to reduce its original dimensionality. 
PCA achieves this by maximizing variances and minimizing the reconstruction error by in-
specting pairwise distances. The data is projected into a set of orthogonal axes and each of 
the axes is ranked in order of importance. While popular, it does not consider data labels 
(being unsupervised) and only looks at variation, therefore there is a risk that it can lead to 
data misclassification. Additionally, trying to map the generated principal component features 
to the original ones is not necessarily trivial. 
 
Linear discriminant analysis (LDA). Unlike PCA, LDA [41] is a supervised dimensionality re-
duction technique. It aims to maximize the distance between the mean of each class and 
minimize the heterogeneity within each class, which makes it better for classification tasks 
than PCA. However, due to its assumption that the input data follows a Gaussian distribution, 
poor classification results can be achieved if this assumption is broken. 
 
Locally linear embedding (LLE). While PCA and LDA perform well in case of linear relation-
ships between different features, LLE [42] is based on manifold learning and well suited for 
non-linear cases. A Manifold is an object of D dimensions which is embedded in an higher-
dimensional space. Manifold Learning aims then to make this object representable in its original 
D dimensions instead of being represented in an unnecessary greater space. 
 
t-distributed Stochastic Neighbor Embedding (t-SNE). t-SNE is a non-linear dimensionality re-
duction method typically used to visualize high dimensional datasets. It works by minimizing 
the divergence between a distribution constituted by the pairwise probability similarities of the 
input features in the original high dimensional space and its equivalent in the reduce low di-
mensional space. t-SNE makes then use of the Kullback-Leiber (KL) divergence [43] in order 
to measure the dissimilarity of the two different distributions. The KL divergence is then mini-
mized using gradient descent. When using t-SNE, the higher dimensional space is modelled 
using a Gaussian Distribution, while the lower-dimensional space is modelled using a Student’s 
t-distribution. This is done, in order to avoid an imbalance in the neighbouring points distance 
distribution caused by the translation into a lower-dimensional space. 
 
Autoencoders. They are machine learning algorithms that use non-linear transformations to 
project data from a high dimension to a lower one, unlike all other dimensionality reduction 
techniques. There exist a variety of autoencoders, such as variational, denoising, convolutional, 
sparse, and so on. However, irrespective of the type of autoencoder, its architecture can be 
broken down into 2 main components: 

1. Encoder – takes the input data and compresses it, to remove as much as possible 
noise and redundant information. The output of the encoder is an embedding of the 
input data into a lower dimensional latent space; 

2. Decoder – takes as input the encoded latent space and attempts to reproduce the 
original inputs. 

To determine how well an autoencoder is able to reconstruct input data, the most straightfor-
ward approach is to compute the mean reconstruction error between the reconstructed sam-
ples and original ones.  

3.4 Assisted labeling 

Since many machine and deep learning tasks require annotated data to be trained on, there 
is an increasing need for tools that can provide assistance with annotation and labeling. In 
particular in the case of civil engineering, where data primarily consists of high-resolution im-
ages, the objective is to annotate either by bounding boxes or fine-grained masks various 
objects or defects of interest. As such, tools like CVAT [44] and many others provide labeling 
capabilities as platforms that are readily available to ease the burden on data annotators and 
data scientists alike. 
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Depending on the use case, every user can have different requirements from their annotation 
platforms. However, there are some common aspects that are generally desirable across all 
platforms: 

1. Automation – Annotation is a repetitive task when done entirely manually. Therefore, 
automating parts of the process will not only reduce average annotation time, and as 
a result the budget spent on it, but also keep annotators more engaged, as they can 
look at more new data in a similar timespan. 

2. Collaboration and quality control – For a lot of AI related tasks, datasets can be quite 
large. It may not be feasible or desirable for a single person to annotate everything, 
especially since quality and collaboration often go hand-in-hand. Peer review is a com-
mon process to detect issues and improve annotation quality. Additionally, a dataset 
may be used to test multiple types of AI models. For instance, one data scientist may 
need semantic or instance annotations for segmentation tasks, while another may 
need bounding boxes for object detection. To overcome such challenges in the most 
effective way, generally whole teams develop an annotation strategy together, includ-
ing a review process to ensure that every team member adheres to it. Therefore, it is 
all the more important for annotation tools to provide collaboration and quality control 
capabilities. 

3. Facilitating understanding of the dataset – In order to develop high quality models, data 
scientists need to acquire a good and deep understanding of the dataset. Statistical 
information as well as filtering tools are valuable aids in this process. 

4. Versatility – Although annotation tools are providing more and more capabilities, they 
are most often part of a larger toolchain that is used within a project. Being able to 
cope with changes in that toolchain is an important advantage. For instance, being 
able to answer questions such as “Can we adapt annotations to a specific format re-
quired by the AI model?” is relevant. Another important factor is how much control is 
available for deploying the tool. Can the data and services be self-hosted, instead of 
purely web-based? 

5. Annotation capabilities – Annotation tools always imply a learning curve, especially for 
first time annotators. If an annotation tool supports a rich ser of features, it becomes 
more likely that a user will continue using it for different use cases that require different 
types of annotations. 

Computer Vision Annotation Tool (CVAT) is an open-source tool for annotating digital im-
ages and videos. The main function of the application is to provide users with convenient 
annotation instruments. It is deployed via Docker and accessed via a browser-based interface 
and features a task-based management system optimized for collaborative work, such that 
users can create public tasks to split up tasks between themselves. It supports supervised 
machine learning tasks pertaining to object detection, image classification and image segmen-
tation, while annotations can be done by using one of four shape types, namely boxes, poly-
gons, polylines and points. 

CVAT allows one to annotate data for each of these cases. There are some advantages and 
disadvantages of the tool. Among its advantages, the tool is web-based, which implies that 
users do not need to install the application, although the option to have it installed on-premised 
is also available. It is also collaborative, easy to deploy and provides support for automatic 
annotation. Within CVAT (Figure 3.1), annotators have a wealth of tools at their disposal for 
copying and propagating objects, applying filters, adjusting visual settings, performing auto-
matic annotation via the object detection API in Google’s TensorFlow framework, and more. 
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Figure 3.1 - CVAT used to label defects in a bridge structure for the automated visual inspection sce-
nario 

1. Automation – For semi-automatic annotation, a method called DEXTR [45] is provided, 
which works by selecting a few extreme points of an object, after which the complete 
segmentation is derived. CVAT is also integrated with OpenCV, an open source project 
around computer vision, allowing users to trace an object rapidly with visual feedback. 
Fully automatic annotatation capabilities annotate all objects in an image, but it is likely 
a user will need to perform corrections to arrive at the desired output. 

2. Collaboration and quality control – Division of work and reviews are supported. Dis-
cussions among various annotations are supported as well in the form of adding com-
ments directly on the images. 

3. Facilitating understating of the dataset – CVAT includes powerful options to set and 
combine filters, but visually it is less intuitive compared to other platforms. This is 
mostly due to the lack of a thumbnail overview that matches the filter settings. Statistics 
are minimal and only available for jobs assigned to annotators, rather than project 
wide. 

4. Versatility – CVAT offers Docker images to easily deploy the server and client sides. 
The user has full control over the entire platform and it is such free to decide how and 
where the service and store the data. There is no plugin system to extend functionaility, 
but it does offer a REST API to interact with other platforms and tools.  

5. Annotation capabilities – CVAT supports polygon annotations but notably lacks a brush 
tool. Especially with a mouse, a polygon tools works quite well, but a brush can be 
useful to make corrections and many users are familiar with such tools. Besides poly-
gons, cuboids, polylines and points are also supported. Tags are supported for both 
annotations and entire images, and the following values are provided as options: Bool-
ean, one of several values, text or numbers. 

Supervisely [46] is a powerful platform for computer vision development, where data scien-
tists can not only annotate datasets, but also experiment with various deep learning models. 
the platform excels in its modularity. Its ecosystem allows users to tailor the platform to their 
needs. Custom visualization can be added directly to the data itself using IPython notebooks. 
Furthermore, custom data transformation steps can be created using the built-in DTL (Data 
Transformation Language) or python scripts. 
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Figure 3.2 - Supervisely used for annotation 

1. Automation – A semi-automatic annotation tool is provided that works out of the box 
with a generic model and is extremely intuitive to use. Rather than having to trace a 
complex object with the polygon or brush tools, a user can just indicate a bounding 
box. The tool will then find the dominant object within that box. If there are corrections 
to be made, it is easy to indicate points that should be annotated and points that should 
not, while the annotation is updated automatically. Fully automatic annotation can also 
be used, by using readily available pre-trained deep learning models or training models 
imported by users on their own data. 

2. Collaboration and quality control – Both features are supported, with one feature worth 
mentioning, which is the issue tracker.  

3. Facilitating understanding the dataset – Each project offers detailed tabular statistics 
on annotations, image tags, object tags and so on. In addition, applications can be 
used to generate more visual reports about relevant distributions in a dataset. While 
going through data, it is easy to use filters and zoom in on specific classes, tagged 
objects, images containing issues, making it more intuitive to use than other tools, such 
as CVAT. 

4. Versatility – Supervisely offers an SDK (Software Development Kit) to develop own 
applications within its ecosystem, when the features desired are not readily available. 
A REST API is also supported. There is an additional option to host agents for some 
tasks, but a fully self-hosted solution requires an enterprise subscription. Data can be 
stored on major cloud providers, such as Google Cloud, Amazon Web Services S3, 
and others. 

5. Annotation capabilities – The platform supports polygon, brush, polylines, cuboid and 
point annotations. Notably, holes can be created in a polygon annotation by subtracting 
other polygons, a feature missing in CVAT. Tags of the following types can be created: 
boolean, one of several values and numbers. These can be applied to both images 
and individual annotations. 

Similar to Supervisely, Hasty [47] also provides a full-rounded platform that not only supports 
data annotation, but also training and evaluation of deep learning models for various computer 
vision tasks. However, while Supervisely is a purely subscription-based service, Hasty em-
ploys a different business model. It is a mix of subscription and pay-for-what-you-use.  

 
1. Automation – For semi-automatic annotation, the same DEXTR tool used is CVAT is 

supported. Additionally, a notable feature is the automatic conversion of bounding 
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boxes to segmentations. There are additional non-AI tools supported, such as color 
based magic wand and a contrast contour selection tool. For fully automated applica-
tions, an approach to maximize user convenience is taken, as no setup is required at 
all to use AI assistant features. Once enough samples are manually labeled, these 
assistants become available automatically, trained on previous annotations. The tool 
even includes AI assistants to automate object and image tagging. 

2. Collaboration and quality control – Images can be marked as requiring a review, but 
issues or comments cannot be added to specific areas of an image, which is a relevant 
downside of the tool. Work can also not be divided within the tool, for example splitting 
a large set into several jobs and assigning different users and reviewers.  

3. Facilitating understanding of the dataset – Basic statistics are provided in a tabular 
form. To filter, a separate review module is provided. The tiled view gives a nice over-
view of all annotations that match the filter settings. It is possible to filter on object tags, 
but multiple tags cannot be combined. 

4. Versatility – Hasty offers third-party clouf storage for Azure blob storage, Google Cloud 
and Amazon S3. A fully self-hosted solution can be requested as well. An API is offered 
for integration into an existing pipeline of new features and applications. Export format 
options are rather limited though: a custom Hasty format, PNGs supplemented with 
JSON and COCO. 

5. Annotartion capabilities – Support for polygon and brush annotations. Polygon tools 
cannot be used to create annotations with holes, in a similar manner as Supervisely. 
Annotation tags are types in a variety of types: boolean, text, number, single choice, 
multiple choice, however they can only be applied to individual annotations. Image 
annotations are available only in a Boolean form. 

Of course, many other tools supporting or dedicated for annotations exist, apart from CVAT, 
Hasty and Supervisely. Notable to mention are LabelBox [48], SuperAnnotate [5], v7 Darwin 
[49], Diffgram [50] and Datatorch [51] due to their advanced features and popularity among 
business customers, as well as LabelMe [52] and VoTT [53], which like CVAT, are free and 
open source. 

3.5 Data quality checks 

Poor data quality leads to technical and architectural bottlenecks, which means that perform-
ing quality checks is essential within an entire machine learning pipeline from the data prepa-
ration stage to the model development stage and after model deployment. 
 
While machine learning models rely on high-quality data, maintaining data quality can be chal-
lenging. The upstream data changes and the increasing pace of data proliferation can drasti-
cally change a model’s overall performance. In case of structured data, such quality checks 
can verify that feature data is not missing, catch when data deviates from a specified range or 
exceeds a set threshold and detect extreme model inputs and outputs. 
 
In contrast, strong data quality assessment methods for unstructured data (such as images, 
videos, speech, text) are somewhat lacking. Current solutions have a broad set of capabilities 
that can be used by data scientist to assess their data’s quality at all stages of a pipeline: 

• Statistical analysis – Tools enable summary statistics of key metadata of a dataset in 

one compact view (e.g., size, count, distribution, source, etc). 

• Cleaning – Users can check for duplicates, remove outlies, fix structural errors and 

check for missing values with support from automatic frameworks. 

• Labeling editing – Distinguish between easy and hard labels, ensure label consistency 

and audit the correctness of labels. 

• Intuitive UI – Access to built-in functions to streamline end-to-end data quality tests 

and monitoring, such as MLFlow [54]. When data visualization is the main objective, 
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frameworks like Tableau [55] or Microsoft Power BI [56] are well suited for both struc-

tured and unstructured data. 

3.6 Dealing with Big Data 

When dealing with massive amounts of data, potentially in the range of TB, the biggest chal-
lenge is managing such volume of data, from the point of view of storage, processing and 
analysis. Big data analytics follows the same steps regarding data preparation as before, 
therefore the logical steps are the same: collection, exploration and processing, version con-
trol, cleaning and feature engineering, labeling if needed and ensuring data quality. With the 
explosion of data, early innovation projects like Hadoop [57], Spark [58], and NoSQL [59] da-
tabases were created for the storage and processing of big data. This field continues to evolve 
as data engineers look for ways to integrate the vast amounts of complex information created 
by sensors, networks, transactions, smart devices, web usage, and more. 
 
Object and NoSQL databases are the best solution for storing big data, since such data is 
collected from a variety of sources – from cloud storage to mobile applications to IoT sensors 
and beyond – and is both structured and unstructured. Data warehouses and data lakes are 
typically the go-to technologies to collect such a variety of data, maintain its metadata and 
statistics on its provenance and updates. 
 
Once data is collected, processing it is challenging simply because of its sheer volume. The 
two most relevant types of processing that can be used in this case are batch processing and 
stream processing. Batch processing inspects and processes large data blocks at a time and 
is useful when there is a longer turnaround between collecting and analyzing data. Stream 
processing looks at small batches of data at once, shortening the delay time between collec-
tion and analysis for quicker decision-making. However, it is more expensive and more com-
plex to manage. 

Several types of tools work together to help you collect, process, cleanse, and analyze big 
data. Some of the major players in big data ecosystems are: 

• Hadoop is an open-source framework that efficiently stores and processes big da-
tasets on clusters of commodity hardware. This framework is free and can handle large 
amounts of structured and unstructured data, making it a valuable mainstay for any big 
data operation. 

• NoSQL databases are non-relational data management systems that do not require 
a fixed scheme, making them a great option for big, raw, unstructured data. NoSQL 
stands for “not only SQL,” and these databases can handle a variety of data models. 

• MapReduce [60] is an essential component to the Hadoop framework serving two 
functions. The first is mapping, which filters data to various nodes within the cluster. 
The second is reducing, which organizes and reduces the results from each node to 
answer a query. 

• YARN [61] stands for “Yet Another Resource Negotiator.” It is another component of 
second-generation Hadoop. The cluster management technology helps with job 
scheduling and resource management in the cluster. 

• Spark is an open source cluster computing framework that uses implicit data parallel-
ism and fault tolerance to provide an interface for programming entire clusters. Spark 
can handle both batch and stream processing for fast computation. 

• Tableau [55] is an end-to-end data analytics platform that allows you to prep, analyze, 
collaborate, and share your big data insights. Tableau excels in self-service visual 
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analysis, allowing people to ask new questions of governed big data and easily share 
those insights across the organization. 
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4 Model building and deployment 

During the modeling step, one or multiple machine learning models are selected, trained, vali-
dated and tested. The common approach to build good model is try to different algorithms and 
compare their performance. In the ideal scenario, the model to be selected for deployment is 
fitting well the historical data (low bias) and at the same time generalizes well to unseen data 
(low variance). Keeping in mind the bias-variance trade-off helps in building successful ma-
chine learning models.  

4.1 Model development 

Model creation is typically the longest stage of the development process. The goal in this step 
is to achieve a high degree of model accuracy, as much as possible. Three primary compo-
nents determine the accuracy of machine learning models: the fit of the algorithm and the 
completeness of the feature set. The modeling process continues by iteratively making im-
provements to these factors until the required accuracy is achieved, or a progress plateau has 
been observed. 

Determining the completeness of the feature set is the primary objective of the data prepara-
tion stage (Chapter 6) and it is completed prior to model development. 

Most importantly to model creation is to select an appropriate algorithm. The algorithm is the 
procedure that is executed on the training data to create – or train – the model. There are 
literally hundreds of machine learning algorithms available to data scientists. The correct al-
gorithm for a given machine learning problem is the prerequisite for a good model that can 
then become a good tool for real-world use cases. Apart from choosing an appropriate class 
of algorithms for a machine learning problem, there exist several other important considera-
tions when deciding for a particular model: 

• Performance – the quality of a model’s results is fundamental to be taken into account 
when choosing a model and depending on the class of model, different metrics can be 
used to assess performance: accuracy, precision, recall, F1-score, mean squared er-
ror, mean average precision, intersection over union, etc. 

• Explainability – explaining a model’s results is paramount to its deployment and adop-
tion in the wild. Understanding how easy it is to interpret the model outputs is important 
before choosing a good model candidate, although depending on the use case the 
best performing models might be the ones with a higher degree of complexity. 

• Complexity – a complex model is able to learn more interesting patterns from the data, 
but at the same time it is harder to explain and maintain. Typically, complexity and 
explainability are inversely proportional. 

• Dataset size – the amount of training data available dictates whether it is possible to 
consider models like neural networks which are excellent at processing and synthesiz-
ing large volumes of data or simper models should be chosen. Going beyond the 
amount of available data, another important consideration is how much data is indeed 
needed to achieve high performance. It may not always be the case that large volumes 
of samples are paramount to a use case. 

• Dimensionality of data – this can be regarded in two different ways: the vertical size of 
a dataset represents the number of samples present in a dataset; the horizontal size 
represents the number of features. More features will often lead to better model out-
puts, but they will also increase the complexity of the model. 

• Training time and cost – how long does it take and how much does it cost to train a 
model? What computational resources does it need? For instance, if the requirements 
and data of a use case are subject to frequent changes, models with long training 
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cycles are not a feasible choice, since the model will need to be re-trained on a more 
frequent basis. 

• Inference time – how long does it take to run a model and make a prediction? Long 
runs cannot be considered for use cases that are centered around real-time or near-
real-time decisions. 

4.1.1 Supervised learning  

Supervised learning algorithms make predictions based on a set of examples. Each input var-
iable consists of labeled training data and a desired output variable. The model analyzes the 
training data to learn the function that maps the input to the output. The inferred function maps 
new, unknown example by generalizing from the training data to anticipate results in unseen 
situations. 

• Classification – when the label to predict is categorical. Examples: naïve Bayes [62], 
SVM [63], decision trees [64], logistic regression, random forest [65], gradient boost-
ing trees [66], kernel SVM [67], neural networks; 

• Regression – when predicting continuous values. Examples: decision trees, linear re-
gression, neural networks, random forest, gradient boosting trees; 

• Forecasting – when predictions about the future are made based on past and present 
data and is most commonly used to analyze trends. Examples: neural networks, 
CART regression trees [68], Gaussian processes [69]. 

4.1.2 Semi-supervised learning  

The biggest challenge with supervised models is that labeling data can be extremely expen-
sive and time consuming. If labels are limited, unlabeled examples can be used to enhance 
supervised learning, therefore applying semi-supervised methods. Ideally, the vast majority of 
data used to learn from are unlabeled and only a small fraction of labeled data is used.  

4.1.3 Unsupervised learning  

When data available is completely unlabeled, the only option is to use unsupervised learning 
models. The objective of such models is to discover intrinsic patterns that underline the data, 
such as a clustering structure, a low-dimensional manifold, a graph or a sparse tree. 
 

• Clustering – grouping samples such that similar examples are clustered together ac-
cording to a set of criteria and distance metrics. This is used to segment the entire 
dataset into multiple groups and further analysis can be performed in each group to 
find intrinsic patterns. Examples: dbscan [70], k-means [71], hierarchical clustering 
[72], Gaussian mixture models, [73]; 

• Dimensionality reduction – due to the high dimensionality of input data, some features 
may be redundant or irrelevant for the task at hand. Reducing the number of variables 
under consideration helps to find true, latent relationships and is commonly used in the 
data preparation stage. Examples: PCA, t-SNE, UMAP, LDA, etc. 

• Anomaly detection – detecting abnormal pattern of behavior in the data relative to an 
established baseline of normal behavior. Examples: one-class SVM, isolation forest, 
autoencoders, neural networks. 

4.1.4 Reinforcement learning  

Reinforcement learning is used mainly for sequential decision-making problems. Unlike for 
any previous type of learning, there is no need to have data in advance. Instead, the learning 
agent interacts with the environment and learns the optimal policy on the fly based on the 
feedback it received from that environment. The feedback from an agent’s action has many 
important components. One component is the resulting state of the environment after the 
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agent has acted on it. Another component is the reward (or punishment) that the agent re-
ceives from performing that particular action in that particular state. The reward is carefully 
chosen to align with the objective for which we are training the agent. Using the state and 
reward, the agent updates its decision-making policy to optimize its long-term reward.  

4.2 Model training, validation and evaluation 

Once a model has been developed for a particular use case and learning task, training is a 
process that tries to fit the best weights and biases to the model in order to minimize its loss 
function. Loss functions define how to optimize machine learning algorithms. Depending on 
the task, objectives, type of data and model, various loss functions can be used. In supervised 
learning, model training creates a mathematical representation of the relationship between the 
data features and the target labels. In unsupervised learning, it creates a mathematical repre-
sentation among the data features themselves.  

 
The objective of model validation and evaluation is to understand how the model may perform 
on new data. During the previous phase, training, a model learns to predict accurately by 
understanding the data at hand. However, instead of understanding the underlying structure 
in the data, a model may actually memorize the data, leading to overfitting. When overfitting 
goes undetected during training, it will resurface when put in production. Validation and testing 
techniques are meant to mitigate such problems as early as possible. 
 
Fundamentally, model evaluation is typically based on the three-way holdout method, which 
consists of three stages each with a corresponding dataset: 

• Training set – used for deriving relationships in the training data; 

• Validation set – used for an unbiased evaluation of the model fit during hyperparameter 
tuning, model selection and error analysis; 

• Test set – user for the final, independent evaluation with data the model has not seen 
during training or validation. 

The steps of the holdout method are as follows (Figure 4.1): 
1. Split data into training, validation and test sets; 
2. Train the model on the training set with different hyperparameter settings; 
3. Evaluate the model performance on the validation set and select the hyperparameters 

with the best performance on this set; 
4. Optionally, train a new model on the combined training and validation set, using the 

best hyperparameter values from the previous step; 
5. Test the model in the independent hold-out set; 
6. Retrain the model on all the data and decide whether to deploy model in production. 
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Figure 4.1 - Steps of the holdout method 
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4.2.1 Model fitting 

When fitting a machine learning model on training, validation and test sets, the typical prob-
lems encountered are overfitting or underfitting.  

Overfitting occurs when a model fits exactly against its training data. When this happens, the 
algorithm unfortunately cannot perform accurately against unseen data, defeating its purpose. 
If the model trains for too long on the training set or when the model is too complex, it will learn 
“noise” or “memorize” the data. Low error rates and a high variance are good indicators of 
overfitting. The validation and testing sets put aside are used to check for overfitting. 

 

Figure 4.2 - Underfitting vs. overfitting 

If overtraining or model complexity results in overfitting, then a logical prevention response 
would be either to pause training process earlier, also known as, “early stopping” or to reduce 
complexity in the model by eliminating less relevant inputs. However, if one pauses too early 
or excludes too many important features, then one may encounter the opposite problem, and 
instead, may underfit the model. Underfitting occurs when the model has not trained for 
enough time or the input variables are not significant enough to determine a meaningful rela-
tionship between the input and output variables. 

In both scenarios, shown in Figure 4.2, the model cannot establish the dominant trend within 
the training dataset. As a result, underfitting also generalizes poorly to unseen data. However, 
unlike overfitting, underfitted models experience high bias and less variance within their pre-
dictions. This illustrates the bias-variance tradeoff, which occurs when as an underfitted model 
shifted to an overfitted state. As the model learns, its bias reduces, but it can increase in 
variance as becomes overfitted. When fitting a model, the goal is to find the “sweet spot” in 
between underfitting and overfitting, so that it can establish a dominant trend and apply it 
broadly to new datasets. 

In particular, in domains such as automated visual inspection and civil engineering, where the 
dimensionality of the data is large and complex deep learning models are the standard choice, 
overfitting is the more common encountered problem. Irrespective of the learning task, be it 
object detection, instance segmentation, classification or others, there exist a few mitigation 
techniques to reduce overfitting: 
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• Early stopping – pause training before the model starts learning the noise within the 
data; 

• Train with more data – expanding the training set to include more data can increase 
model accuracy by providing more opportunities to learn the dominant relationships 
between input and output; 

• Data augmentation – noisy data injected into a model might increase its robustness; 

• Feature selection – identify the more relevant features by eliminating the irrelevant and 
redundant ones; 

• Regularization – apply a penalty to the input features with larger weights to limit the 
amount of variance in the model. L1 and L2 regularization, as well as dropout are the 
most common regularization techniques used; 

• Ensemble methods – using bagging and boosting techniques out of simpler models 
whose outputs are aggregated into a single prediction output. 

4.2.2 Model error analysis 

Depending on the type of learning task at hand, there exist a variety of performance metrics 
used to evaluate how accurate a model is. In classification, precision, recall, F-scores and 
confusion matrices are commonly used. In regression, mean squared error, mean absolute 
error and root mean squared error are the norm. In the case of detection and segmentation 
tasks, models report mean average precision and intersection over union. These metrics have 
been detailed in D2.1. 
 
Irrespective of the task at hand, a recurring problem with model assessment practices is rely-
ing on such aggregate metrics to score models on entire benchmarks or datasets. In practice, 
it is difficult to understand a model’s behavior from one single number. At the same time, for 
data scientists and business practitioners alike it may be interesting to take a deep dive across 
several dimensions of the input feature space and ask questions such as “What happens to 
the accuracy of the segmentation model when the defect is small and its aspect ratio is ex-
treme?” or “Which model achieves better localization of defects?”. Navigating the terrain of 
failures along multiple potential dimensions related to the task at hand, the model and the data 
is challenging.  
 
As a result, model error analysis is an invaluable approach to shedding light unto how models 
fail, how failures are distributed and given the choice between multiple models, which is the 
best option relative to use case objectives.  
 
Notably, the Error Analysis toolkit [74] developed at Microsoft Research provides model de-
bugging error capabilities, with active data exploration and interpretability techniques. It allows 
users to identify and diagnose error patterns across data slices with the condition that the input 
data is structured. 
 
The case for model error analysis for unstructured data is more complex, and in particular for 
detection and segmentation tasks that are most common in automated visual inspection sce-
narios for civil engineering. Typically, mean Average Precision (mAP) is the go-to metric for 
such tasks. However, mAP suffers from complexity issues. It is defined as the area under the 
precision-recall curve for detections at a specific intersection-over-union (IoU) threshold with 
a correctly classified ground truth (GT), averaged over all classes. The standard has become 
to compute mAP over 10 IoU thresholds (interval of 0.05) to get a final mAP0.5:0.95. The com-
plexity of this metric poses a particular challenge as error types become intertwined, making 
it difficult to gauge how much each error type affects mAP. Moreover, by optimizing for mAP 
alone, it may be inadvertently leaving out the relative importance of error types that can vary 
between applications and use cases. 
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Frameworks like HOIEM [75], TIDE [76], UAP [77] or COCO Eval [78] provide advanced ca-
pabilities to understand model errors beyond mAP, by categorizing and summarizing errors 
for detection and segmentation tasks into fine-grained categories based on binning false pos-
itives and false negatives. For instance, TIDE defines 6 types of relevant error types: classifi-
cation, localization, classification + localization, duplicate, background and missed ground 

truth, as shown in Figure 4.3. 

 

 

Figure 4.3 - 6 types of model errors outputted by TIDE (from [77]) 

Weighting the errors depending on the use case objectives (e.g., localization errors are more 
important than localization errors) and computing their influence on the overall mAP, it is pos-
sible to understand exactly where models fail and by how much from the ideal performance. 
Moreover, such a deep analysis can be done for multiple models or model versions (i.e., an 
alternative to model readiness techniques in Chapter 7.5.3), thus allowing an informative com-
parison which is critical in choosing the model that best suits a particular use case. Finally, 
fine-grained capabilities, such as analyzing model errors relative to specific attributes (e.g., 
size of a defect, aspect ratio of a defect) offer an even deeper insight into how a model will be 
expected to perform once deployed.  

4.3 Model deployment 

After a model has been validated and tested, it is deployed into a live environment to be used 
in various use cases for its intended purpose. The environment provides the model with the 
necessary hardware resources for running as well as access to the data sources that it draws 
data from. Then, it is integrated into a process or software, such that it is made accessible to 
users from their respective endpoints.  
 
Typical options for model deployment include on-demand prediction or batch prediction 
modes. In some more recent cases though, where new data is constantly being acquired, 
models can be deployed in an embedded mode on edge and mobile devices. An illustrative 
example is the scenario of on-the-fly detecting defects on a car manufacturer’s production line 
which is done by taking pictures of car components and running the defect detection model 
on the same mobile device. The decision to stop the production line is based exclusively on 
the model’s output and is done in a matter of seconds. Had such a model run in batch mode 
in a cluster, the decision to stop the production line would be significantly delayed. 
 
Each type of model deployment serves different purposes.  

4.3.1 Batch prediction mode 

In the batch scenario, models are run offline. Their compute cost is minimized, since there are 
fewer dependencies on external data sources and remote services. The local processing 
power is most times sufficient for computing algorithmically complex models and allows to 
debug them when failures occur or to tune hyperparameters. Batch mode implies a partitioning 
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of the data into segments that are processed sequentially. This can be achieved by using 
sampling schemes, like balanced or stratified sampling, or via online algorithms, such as Map 
Reduce.  
 
Offline models can be optimized to handle a high volume of job instances, through scheduling 
with frameworks like Airflow [79] or Prefect [80]. 

4.3.2 On-demand prediction mode 

In online mode, machine learning models are deployed via web services, by using frameworks 
like Flask. Once a model has been validated and tested, in on-demand mode, it first needs to 
be persisted. Libraries like scikit-learn offer off-the-shelf persistence and restoration function-
alities. Then, the persisted model is served to a web framework which will make it available to 
users through a REST API. The benefit of online deployment mode is that it is typically cheaper 
and can provide near real-time predictions when compared to batch mode. Availability of CPU 
or GPU power is less of an issue if the model runs in a cluster or cloud service, since it is 
easily made available through API calls. 

4.3.3 Embedded/Edge prediction mode 

To reduce latency and data bandwidth consumption, models can be run closer to the user, on 
mobile or IoT devices. However, such devices have limited computation power and storage 
capacity and therefore complex and large models cannot be directly deployed. Instead, using 
quantization or aggregation techniques, edge-deployed models can be simplified while main-
taining acceptable accuracy. Platforms like TensorFlow Lite [81] can be used to simplify Ten-
sorFlow models.  

4.4 Monitoring of model and data in production 

Once a model is deployed in production, in order to eventually be adopted, its performance 
needs to be constantly evaluated on real-world data. In fact, models tend to become stale over 
time and proper monitoring of both model and data will provide invaluable information when 
performance decreases and the model needs retraining or the data needs to be updated 
(shown in Figure 4.4).  
 

 

Figure 4.4 - Model staleness and performance degradation in time 

Some of the challenges a model will encounter in production are: 

• Data and feature drifts, which can lead to training vs. evaluation skew, where a 
model achieves poor performance in production despite rigorous testing and valida-
tion during development phase; 

• Model drift, where a high performing model in production suddenly experiences a 
performance dip over time; 
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• Black-box models, where a model’s predictions are difficult to interpret with respect to 
business objectives (Chapter 8); 

• Model readiness, where newer versions of models need to be compared against 
older in-productions versions; 

• Performance against extreme cases, where a model’s performance for corner cases 
has to be assessed; 

• Data quality issues, where there is a need to ensure that production data is pro-
cessed in the same way as training data was (Chapter 6.5). 

4.4.1 Data and feature drifts 

Unless constantly retrained and updated, models cannot automatically adjust to changing in-
put data, therefore detecting data and feature drifts is vital. Such drifts refer to a meaningful 
change in distribution between the training data and production data, or their associated fea-
tures. Oftentimes, the changes that degrade a model’s performance the most are changes 
made to the most informative features that the model uses to make predictions.  

Detecting such changes can be done in the simplest way by monitoring their statistical feature 
values over time, for instance by investigating standard deviation, average, frequency and so 
on. Where continuous features are involved, divergence and distance tests such as Kullback-
Leibler divergence or Kolmogorov-Smirnov [82] statistics are widely used. For categorical fea-
tures, chi-squared tests, entropy or the cardinality or frequency can provide good indications 
of drift. In case the number of features is very large, it is preferable to first use dimensionality 
reduction techniques like PCA, LDA, t-SNE and others to prune them and then perform the 
necessary statistical tests. 

Following a data drift detection, an alert can be triggered and based on how large the distri-
bution change is, it is either possible to trigger a retraining job or build another model entirely 
with the new data. In the latter case, it is common that the new data will not be large enough 
to warrant a remodeling. It is preferable then to prepare the new data with historical (training) 
data and during retraining, assign higher weights to the features that drifted significantly. 

4.4.2 Model drifts 

Model drift occurs when the relationship between features and labels no longer holds because 
the learned relationships have changed over time. As a result, a model consistently returns 
unreliable and less accurate results over time compared to benchmarks or business metrics. 
It can happen in different ways: 

• Instantaneous model drift – when there is a sudden drop in model performance over 
time and it is generally caused by data quality issues or the model being deployed in 
an entirely new domain for which it was not previously trained; 

• Gradual model drift – occurs as a result of the natural consequences of a dynamic, 
changing and evolving use case, such as newly introduced features that skew the un-
derlying pattern in the data; 

• Recurring model drift – occurs as a result of seasonal events that are periodic and 
recurring over a fixed period a time; 

• Temporary model drift – difficult to detect with rule-based methods but detectable with 
unsupervised methods, this type of drift can occur due to one-off events, such as ad-
versarial attacks. 

 

Detecting model drift can be done by using similar statistical tests as in the case of data drifts. 
By setting a predictive metrics threshold, a user can analyze whether a model consistently 
underperforms. In addition, monitoring data shift is a good indication whether it is necessary 
to analyze a model for degradations or drifts. 
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Following a model drift detection, a machine learning system can be scheduled to execute 
retraining od the model at predefined intervals. This is especially useful when the changes in 
a use case are frequent. Another option is to use online learning algorithms to improve the 
model as new data becomes gradually available. 

4.4.3 Model readiness 

When multiple versions of a model or multiple models tackling the same problem exist, it is 
possible for a new version or model to significantly improve average performance and yet 
introduce errors that the old model did not make. Those errors can be rare yet so detrimental 
as to nullify the benefit of the improved model. In some cases, post-processing pipelines built 
on top of a model can break. In other cases, users are so accustomed to the behavior of the 
old system that any introduced error contributes to a perceived “regression” in performance. 
 
Requirements for in-the-wild model readiness go beyond accuracy, and include explainability, 
fairness (Chapter 8), as well as compatibility and regression minimization. One approach re-
cently proposed by Amazon is to force the data representations computed by the new model 
to exist in the same space as the representations of the old model [83]. Another method is to 
perform positive-congruent training (PC training), which aims to train a new classifier without 
introducing harmful errors relative to the old model [84]. PC training is not just forcing the new 
model to mimic the old model, a process known as model distillation [85]. Model distillation 
mimics the old model, including its errors. PC training aims to mimic the old model only in the 
case of right predictions.  
 
Another version of the incompatibility problem arises when a model is to be deployed on dif-
ferent devices with different resource constraints. A typical example is to have a large and 
powerful model running on a GPU cluster and smaller versions of it running on edge devices. 
To ensure compatibility, it is not enough for the smaller models to approximate the accuracy 
of the large model. In fact, they also need to approximate its architecture. A recent break-
through has shown how to enforce this type of compatibility across platforms [86]. 
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5 Trustworthy adoption of AI / ML models 

5.1 Introduction 

Advancements in the fields of AI and machine learning over the past few years have been 
nothing short of amazing, to the point that machine learning models have been gradually inte-
grated in processing, analysis and decision making systems to assist or augment human abil-
ities or even act fully autonomously, sometimes with far reaching and unanticipated conse-
quences. 
 
As these technologies become more pervasive in our lives, journalists, activists, and academ-
ics are starting to uncover problematic aspects stemming from the use of certain AI methods. 
Issues for instance related to racial and societal bias have been highlighted in relation to the 
use of data-driven and algorithmic decision making in the case of pretrial detention decisions 
[87] and predictive policing [88]. Imbalance in medical imaging datasets for computer-aided 
diagnosis was shown to produce biased diagnosis across genders [89]. And these are only 
few of the fairness, bias, accountability and interpretability issues tied to the unexamined de-
ployment of AI systems that have been documented in the literature (see e.g., [90]). 
 
It is important to point out that while these issues are critically important because of the broad 
ethical and societal consequences that they entail, in the context of this document they are 
also crucial because they imply, and often are originated by, technical and engineering factors 
that have the potential of also affecting strictly technical applications of AI and data-driven 
decision making. The perspective of this chapter will therefore be rather technical and in the 
extend that it will examine the ethical and socio-technical questions related to the deployment 
of machine learning and AI systems, it will do so both with the goal of cautioning practitioners 
and technical users on the broad social implications, as well as in the perspective of pointing 
out mechanisms that might represent risks originating from the use of these technologies even 
in a strictly technical domain. 

5.2 Guidelines for trustworthy AI 

The challenges inherent to the socio-technical and societal implications of AI adoption exam-
ined and reported by academics, journalists and activists alluded to in the previous section 
have been increasingly brought under the scrutiny of legislators. On April 8, 2019, following 
more than 500 public consultations [91] the European Commission published a report on Eth-
ics guidelines for trustworthy AI, whose intended scope is to put forth key requirements to 
establish trust in human-centric Artificial Intelligence [92]. The report was compiled by an in-
dependent High-Level Expert Group composed of 52 experts with relevant expertise from ac-
ademia, civil society and industry. 
The guidelines indicate that a trustworthy AI system should be: 

1. lawful, i.e., respecting all applicable laws and regulations 

2. ethical, i.e., respecting ethical principles and values 

3. robust, i.e., both from a technical perspective while considering its social environment. 

More specifically, the guidelines put forward a set of 7 key requirements that AI systems 
should meet to be deemed trustworthy. A specific assessment list aims to help verify the ap-
plication of each of the key requirements is shown in Figure 5.1. 
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It is important to point out that while these guidelines are meant to inform legislation, they are 
not being legally enforced, but are part of a broad self-regulatory strategy. 
 
Beside the fact that it might be important to ensure compatibility of an institution’s AI strategy 
with the EU Commission guidelines as they will be the basis for future regulation, these guide-
lines also server as a useful blueprint pointing out the salient and potentially problematic areas 
at the intersection of AI and society. 
 
Among the 7 ethical principles of the EU Commission trustworthy AI guidelines, in the previous 
chapter we already covered aspects that have to do with the key requirement 2, robustness 
and safety of deployed machine learning models. In the rest of this chapter we will cover issues 
that touch upon some of the remaining key requirements, specifically as they pertain to training 
and deploying trustworthy machine learning models. This assumes that anything that has to 
do with possible challenges at the level of the data (problem specification and evaluation met-
rics, data understanding, and data preparation) has been addressed (as done in the previous 
chapter of this document), and we are ready to tackle the next step in the machine learning 
lifecycle [93], which is modeling. 

5.3 Trustworthiness machine learning modeling 

A useful mental model for a trustworthy machine learning modeling workflow includes the fol-
lowing three parts [94] and is depicted in Figure 5.2: 

1. pre-processing the training data 

Figure 5.1 - The 7 ethical principles grounding the EU “Ethics guidelines for trustworthy AI” (from [91]) 
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2. training the model with a machine learning algorithm 

3. post-processing the model’s output predictions. 

 
The trustworthiness issues that can arise in the pre-processing step have largely been cov-
ered in the previous chapter. 
 
In this section we will address the issues that can arise during the model training and post-
processing phase: lack of explainability, unfairness and adversarial attacks. 
 

5.3.1 Explainability and Interpretability 

Explainability and interpretability of machine learning models is the aim to let people under-
stand how machines makes their predictions. This can be a surprisingly hard tasks, since 
many machine learning models generate their results from the data they are fed after a se-
quence of possibly complex non-linear operations which renders the relation between inputs 
and outputs difficult to grasp, let alone explain. 
 
This potential difficulty in explaining the mechanism behind the decision of more or less 
opaque machine learning models motivates to draw a clear distinction between the differential 
use of the term interpretability and explainability. 

• Interpretability refers to models whose predictions can be readily inspected and 
understood by a domain expert. These models are also referred to “white box” models to 
metaphorically indicate that their operations are “transparent” to the practitioner and their 
outputs can be readily understood in relation the corresponding inputs. 

• Explainability on the other hand refers to models that are in and of themselves too 
complex to be readily explained, as the process by which outputs are related to inputs is 
unintelligible to the point of being effectively completely opaque. These models are also 
referred to as “black box” models, in order to evoke their opaqueness. 

Figure 5.2 - Main parts of trustworthy machine learning modeling (from [94]). 

Figure 5.3 - An example of black box model (ResNet). inputs are related to the output by a 
complex sequence of non-linear operation which makes the mapping unexplainable (from [96]). 
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There is a pervasive idea in the field that white box interpretable model, due to their inherent 
simplicity, are supposedly weaker machine learning modes bound to exhibit lower accuracy. 
This view is illustrated by a picture shown in the XAI DARPA BAA of 2016 on Explainable Ar-
tificial Intelligence (XAI) [97], which depicts a supposed trade-off between interpretability and 
accuracy (see Figure 5.5). 
 
This view is now being called into question on multiple fronts (see e.g., [98]) for being on one 
hand excessively simplistic, in part based on the fact that interpretable models have been 
shown to rival black box models in several domains of interest, but also because generating 
explanations of black box models without proper input and supervision from domain experts 
is a practice that risks perpetuating the bad practices and causing the same harms to society 
that the explainability subfield of trustworthy AI is trying to avoid [98]. 

 

Figure 5.4 - An example of interpretable model. A decision tree is an example of interpretable 
model: each operation constituting an intermediate decision as to how an input should be 
classified can be verified or challenged separately (adapted from [95]). 

Figure 5.5 - Depiction of the accuracy-interpretability trade-off (from (12), adapted from [97]) 
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With these cautionary points in mind, in the next sections of this chapter we will examine 
methods in the field that have been developed to produce explanations for black box machine 
learning models. These methods also collectively go under the category of post-hoc explain-
ability, since the idea is that they provide post-hoc explanations of already existing models 
and decisions, as opposed to white box models, which are design with explanations already 
built into their architectures. 

5.3.2 Post-hoc explainability 

A common difficulty arising when trying to explain machine learning models stems from a fun-
damentally epistemic hard question, which is, what constitutes a good explanation? Just as 
people can justify and explain the same event in a myriad of different ways, the functioning of 
a machine learning model can be explained by many different types of explanations. Different 
explanations might be better suited to particular goals, domains and consumers of the expla-
nations, or in other words, one explanation does not fit all [99]. 
 
There are three dichotomies that delineate the methods and techniques for machine learning 
explainability depending on the goals [94]:  

• local vs. global explanations: is the user interested in understanding the machine 
predictions for individual input data points or in understanding the model overall; 

• exact vs. approximate explanations: should the explanation be completely faithful to the 
underlying model or is some level of approximation allowable; 

• feature-based vs. sample-based explanations: is the explanation given as a statement 
about the features or is it given by pointing to other data points in their entirety. Feature-
based explanations require that the underlying features be meaningful and understandable 
by the user. 

Each one of the choices at these dichotomies can be combined with the other ones, giving a 
total of 8 combinations corresponding to as many explanation types. Each one of these types 
typically suit a different kind of persona in the process of evaluating the machine learning 
model based on the provided explanations. Figure 5.6 shows for each type of explanation a 
type of persona for which it would be interesting, along with some example methods developed 
in the field that implement that type of explanation. For details on how the mentioned methods 
are implemented, please refer to reference [94]. 

Figure 5.6 - The three dichotomies of explanations and their mapping to personas (from [94]) 
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Despite being a subfield and occasionally controversial subfield of AI (see e.g. [98]), explain-
able AI is already a vast and thriving ecosystem of methods, algorithms and best practices. It 
would be pointless to try to be exhaustive here, particularly because the community has 
started to organize the core material, including code in publicly accessible repositories. One 
such repository if the IBM Research AI Explainability 360 (AIX360) Toolkit, which can be freely 
utilized and deployed in ones infrastructure under the Apache-2.0 license (see Figure 5.7). 
 

5.3.3 Concept-based interpretability 

Recently, post-hoc explainability has been criticized for operating on low-level features such 
as pixel values, or sensory signals that are combined in unintelligible ways and do not corre-
spond to high-level concepts that humans easily understand, making their explanations cor-
respondingly brittle [100–103]. 
 
One way to overcome these limitations that has been proposed is to design machine learning 
models that generate decisions based on human-understandable categories (i.e., concepts) 
grounded in domain expertise rather than raw features [100,101,104–111]. 
 
For example, to identify a bird species, a model should focus on morphologically meaningful 
concepts, such as the shape, size and colors of beak, feathers or wings, rather than focusing 
on raw pixels, and combine them in ways that a domain expert (in this case an ornithologist) 
would reckon as intelligible to produce a classification. 
 
It was recently demonstrated that this type of concept-based attribution can be achieved to-
gether other two properties that are of paramount importance for good explanations, which 
are plausibility and faithfulness: 

Figure 5.7 - Some of the methods implemented in the IBM Research AI Explainability 360 (AIX360) 
toolkit publicly available at the URL http://aix360.mybluemix.net (from [99]). 

http://aix360.mybluemix.net/
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• Plausibility: an explanation is defined as plausible if it is convincing to a domain expert 
using the machine learning model. This means that the explanation is grounded in domain-
relevant entities, and is compatible with the mechanisms and phenomena that are known 
to take place in the domain; 

• Faithfulness: an explanation is defined as faithful to a decision if it truly reflects the 
reasoning process behind the decision. This means that the same explanation will always 
need to correspond to the same decision, and conversely different decisions cannot 
correspond to the same explanations. 

The ConceptTransformer model [112] is a model that achieves all of this: it provides concept-
based explanations that are plausible by construction and faithful by design. It does this by 
training a transformer-based model to reproduce the concept explanations of the training da-
taset and by constraining its structure so that the explanations that it provides mathematically 
satisfy a formal definition of faithfulness (see Figure 5.8). 

 

5.3.4 Fairness 

The main objective of fairness in AI systems is to eliminate or mitigate the effect of bias. Bias 
often manifests in the form of unfair treatment of different groups of people based on some 
protected or sensitive attributes (e.g., gender, race, ethnicity, etc.). 
 
There are two main types of fairness that are of main concern: 1) group fairness and 2) indi-
vidual fairness. 

• Group fairness is the idea that the average behavior of a machine learning model like a 
classifier should be the same across groups defined by protected attributes. For instance, 
the probability that an algorithmic decision making system approves a loan should be the 
same irrespective of the gender of the applicant. 

• Individual fairness is the idea that individuals similar in their features should receive 
similar model predictions. Individual fairness includes the special case of two individuals 

Figure 5.8 - Attention scores provided by the ConceptTransformer model while predicting the species 
of the birds represented in some input pictures. The attention focuses on relevant spatial location and 
concept in ways that are guaranteed to be faithful, therefore providing robust explanations (adapted 
from [112]). 
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who are exactly the same in every respect except for the value of one protected attribute 
(this special case is known as counterfactual fairness). 

 

Notice that the conceptual and methodological machinery developed by the fairness in AI 
community can also be directly reapplied to quantify and counter other forms of bias in ma-
chine learning, that do not necessarily have to do with societal injustice. For instance, if instead 
of focusing on protected attribute one focuses on important structural attributes in the context 
of civil engineering, then methods that mitigate lack of group fairness can be used to mitigate 
that the performance of a machine learning model might be different across values of the 
selected structural attribute, as for instance in the case where a defect detection algorithms 
has an accuracy that is high for some defects, but excessively low for other defects. This type 
of scenario can be addressed with the same methods that identify and solve group fairness. 
 
Despite being a relatively new concern in AI, the fairness, accountability, transparency and 
ethics community in machine learning is a thriving community that has already produced a 
vast remarkable ecosystem of metrics, methods and algorithms, in parts also to its reliance 
on inputs from the wider academic and technical traditions concerned with the legal, ethical 
and socio-technical impact of technology. 
 
For more details oriented to practical applications of fairness in AI we refer the reader to two 
high-quality software repository that the machine learning community has made freely availa-
ble. 
 
The first one is the IBM AI Fairness 360 (AIF360) toolkit [113] which is available at the url: 
http://aif360.mybluemix.net, and which provides a comprehensive set of fairness metrics for 
datasets and machine learning models, explanations for these metrics, and algorithms to mit-
igate bias in datasets and models. 
 

 

Figure 5.9 - The fairness pipeline of the IBM AIF360 toolkit (from [113]) 

http://aif360.mybluemix.net/
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A second very valuable publicly available online resource is the Microsoft Responsible AI 
Toolbox [114] available at the url http:// responsibleaitoolbox.ai, which is a suite of tools pro-
vides a collection of model and data exploration and assessment user interfaces that enable 
a better understanding of AI systems. These interfaces are meant to empower developers and 
stakeholders of AI systems to develop and monitor AI more responsibly, and take better data-
driven actions. 
 

5.3.5 Guidelines for Human-AI interactions 

The topic of Human-AI interactions has several contact points with the fields of interpretability, 
explainabilty and fairness, but is generally more specifically concerned with the design of end-
products that incorporate AI algorithms and maximizing their potential of the end-user. This is 
in line with a long tradition of the principle of human-AI interaction that have been discussed 
in the human-computer interaction community for at least two decades now. 
 
Central concepts in Human-AI interactions are the concepts of uncertainty quantification 
(specifically how to quantify and communicate the uncertainty that the AI system might have 
about its internal representations and the outputs that it provides [115,116]), intelligibility 
(which is a human-centered concept that relates to interpretability [117]), and transparency 
(the idea of disclosing information about the whole lifecycle of a system). 
 
A good starting point on the topic is reference [118] which provides a set of very general 
guidelines for human-AI interaction, which the authors validated through multiple rounds of 
evaluation and user studies (see Figure 5.11). 
 
It will come with no surprise that the topic of Human-AI interaction is currently in fervent de-
velopment, particularly due to the recent acceleration of the trend of infusing consumer prod-
ucts and software with AI capabilities. Just as a way of further emphasizing the importance of 
the topic it is worth mentioning that the recent US National Security Commission report on 
Artificial Intelligence (NSCAI) has dedicated a whole chapter on the need of “Establishing jus-
tified confidence in AI systems” and human-AI interaction and teaming in its report meant to 
provide recommendations to the President and Congress to “advance the development of 
artificial intelligence, machine learning, and associated technologies to comprehensively ad-
dress the national security and defense needs of the United States” [119]. 

Figure 5.10 - The dashboard that composes the Microsoft Responsible AI Toolbox (from [114]) 
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Figure 5.11 - The 18 human-AI interaction design guidelines proposed in [118], categorized by when 
they likely are to be applied during interaction with users, along with illustrative application 
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6 Case study: Defect detection and segmentation for au-
tomated visual inspection 

6.1 Use case description 

Numerous civil engineering structures have been constructed over the last century and are 
critical for transportation, such as airport tarmacs, roads and bridges. For example, bridges 
are exposed to different kinds of external loads, including traffic and hurricanes, during their 
life cycle. These external loads cause structural damage to bridges, which may lead to their 
collapses. In fact, more than 40% of the bridges, roads and tunnels around the world have 
already surpassed their expected life expectancy. To ensure their safety and serviceability, it 
is essential to inspect the physical and functional condition of the structure on a regular basis. 
Consequently, civil engineering structure maintenance has become an important topic of re-
search. Currently, most inspections around the world are conducted as visual inspections, 
which are the most effective nondestructive methods to assess the physical and functional 
conditions of a structure (Figure 6.1). 
 

 

Figure 6.1 - Typical bridge components that are visually inspected on a regular basis. 

However, every visual inspection depends on the inspector’s subjective evaluation, which 
could lead to reliability and accuracy issues for the inspection results. In addition to the relia-
bility and accuracy issues, the visual inspection method is problematic in terms of inspector 
safety, work efficiency, and cost. Typically, experts perform a manual inspection from the 
ground up by using lifts, ropes and platforms, which can be quite dangerous (Figure 6.2). 
Additional challenges are imposed by weather conditions, traffic, high costs and the fact that 
any findings are not easy to document afterwards. As a result, just for the manual inspection 
of bridge structures alone, more than $50 billion and 2 billion man-hours have been invested. 

 

Figure 6.2 - Typical manual visual inspection of a bridge. 

The advances in drone technology and its falling costs have recently pushed this laborious 
process of manual inspection progressively towards automation. Flying drones around a struc-
ture and using embedded high-resolution cameras to collect visual data from all angles not 
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only speeds up the inspection process, but it also removes the human from potentially dan-
gerous situations. In addition, thanks to the power of artificial intelligence capabilities, defects 
can be detected and localized with high precision automatically and presented to the reliability 
engineer for further analysis. 
 
To address these problems, drone technologies have been recently used to conduct the visual 
inspection of civil engineering structures. A drone-based inspection system can take high res-
olution images from all positions around the structure and constant distances, under optimal 
lighting and weather conditions. These collected images are used by advanced machine learn-
ing models to develop a full-fledge automated visual inspection pipeline (Figure 6.3) that pro-
vides the following core capabilities: 

• high-quality data acquisition; 

• detect, segment and assess the severity of defects in the structure; 

• measure the size of defects with mm-level precision; 

• reconstruct the overall structure without additional CAD models by using instead ad-
vanced photo stitching algorithms. 

 

Figure 6.3 - Automated visual inspection pipeline. 

6.2 Data and Machine Learning preliminaries 

The first requirement in to understand what image capturing strategies for inspection can be 
used such that high-quality and high-resolution images are collected for further use. While 
various strategies exist, two particular strategies were used successfully. The standard scan 
approach consisted of a drone flying over an area and taking pictures in a regular grid. A more 
sophisticated approach, called high-resolution grid approach, was conducted in such a way 
that a drone would hover at a constant position but turns its head in various directions to 
capture multiple images aligned in a grid fashion.  
 
Additionally, the drone flights were executed in order to meet additional requirements: 

• Good lightning conditions, therefore performing inspection on days with good weather 
conditions was important; 

• Particular care was taken not to capture images of any irrelevant structures, such as 
cars, water, ships and so on, since these elements have the potential of confusing the 
machine learning model; 

• Support for cylinder inspections (e.g., cell towers, round piers) was provided by devel-
oping three patterns: 1) horizontal circles (images are taken on the move, time effi-
cient), 2) vertical lines (images are taken at pre-calculated points while hovering), 3) 
horizontal polygons (horizontal lines in a polygon shape around the cylinder); 

• Support for grid inspection which allowed the automatic creation of grid inspection pat-
terns by dividing the area into recursive grids. 
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Particular to the Sund&Baelt [1] use case was using a Matrix JDI 200 RTK enterprise drone 
[2] equipped with a multi-sensor ZH20T system which took pictures using the high-resolution 
grid strategy. For each grid, this included a wide overview picture as well as a full grid of 
images taken with a tele-objective resulting in high resolution. Over 20000 single images ar-
ranged in over 300 such grids capturing the 23 pillars from all angles of the Storebælt East 
Suspension bridge [3] were collected. At 254 metres above sea level, the East Bridge has a 

length of 6790 metres and a free span of 1624 metres. Each image has size of 6K x 4K pixels, 

which amounted to over 20GB of data collected. 
 
The second requirement was, based on the images collected, to understand what types of 
defects should be detected and segmented within the use case, at which granularity these 
defects need to be detected and to annotate representative examples of such defects accord-
ingly. Together with civil engineering experts from Sacertis [4] and Sund&Baelt, we defined 
seven types of defects of interest, as shown in Figure 6.4: 

• Cracks 

• Cracks with precipitation 

• Rust 

• Spalling 

• Algae 

• Net cracks 

• Spalling with corroded rebar 

 

Figure 6.4 - Defects to be detected with the automated visual inspection pipeline. 

Next, the use case requirement was to detect these defects with high precision of both locali-
zation (i.e., precise location of defect) and classification (i.e., accurate defect categorization). 
This indicated that the annotations of representative defects need to be done at both bounding 
box level and fine-grained instance segmentation masks. Especially, the latter is an extremely 
time consuming manual effort, as human annotators need to draw precise contours around 
defects that may be potentially very thin or small, such as the case for cracks. Since in every 
image there exists an arbitrary number of defects present and all defects should be annotated 
manually, out of the 20000 images collected, a high-quality set of 150 annotated images was 
developed together with civil engineering experts. This set was later used to assess the per-
formance of the machine learning model in the evaluation stage.  
 
Since detection and segmentation models are typically fully supervised, they require a large 
amount of training data. The 150 images annotated with domain experts were not enough for 
any detection and segmentation model to achieve high performance, therefore SuperAnnotate 
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[5] was engaged as an external party to annotate an additional 2500 high-resolution images, 
based on training and guidelines previously developed in collaboration with experts from 
Sacertis and Sund&Baelt.  

6.3 Model development cycle 

The pre-processing step is concerned with extracting a set of images captured via the drone 
system that are high quality and present a mixture of defects. After the images have been 
selected, various augmentations and transformations are performed, such as applying vision 
filters (e.g., blue, sharpness, contrast, etc.), cropping, downscaling, shifting, rescaling, and so 
on. In the typical case where defects are not equally distributed, oversampling and under-
sampling techniques can be applied to provide the detection and segmentation model a more 
balanced dataset to learn from. 

 
The model selection is primarily dictated by the need to both detect and segment multiple 
types of defects. With respect to segmentation, there are multiple types of segmentation tasks. 
Image segmentation involves partitioning images into multiple segments or objects and can 
be formulated as a classification problem of pixels with semantic label (semantic segmenta-
tion) or partitioning of individual objects (instance segmentation). Semantic segmentation per-
forms pixel-level labelling with a set of object categories (e.g., person, animal, vehicle or crack, 
spalling, casting defect) for all pixels of the image, thus it is generally a more difficult task than 
image classification, which predicts a single label for the entire image. Instance segmentation 
extends semantic segmentation scope further by detecting and delineating each object of in-
terest in the image (e.g., partitioning of individual defects). The specific requirement of the 
automated visual inspection use case was to perform instance segmentation, namely detect 
and segment every instance of a defect type within an image. 
 
Major deep learning methods for instance segmentation include Fully Convolutional Networks 
(FCNs), encoder-decoder based models, multi-scale and pyramid network-based models, Re-
gional Convolutional Neural Networks (RCNN) based models, etc. [6]. In FCNs, multiple con-
volutional layers are employed on the image directly as the feature extractors with the 
downsampling and upsampling process inside sliding windows, but its efficiency is very low. 
With R-CNN, the image is preprocessed and thousands of Region of Interests (RoIs) for fea-
ture extraction with FCNs are eventually produced. The R-CNN reduces the computational 
time compared to alternative approaches and improves the accuracy of segmentation. How-
ever, it still is computationally demanding. Fast R-CNN and Faster R-CNN are quite different 
from the conventional R-CNN. The former applies FCNs directly on the RoIs of the feature 
maps which comes after convolutional process on the original image, but, in Faster R-CNN, a 
network called Regional Proposal Network (RPN) on these maps is inserted to automatically 
produce the proposal, thus the speed and accuracy of prediction are improved [7]. However, 
none of them are applicable for instance segmentation. Mask-RCNN [8] has been proposed 
to predict the class, bounding box and instance segmentation mask of an object, which made 
it the best candidate for the machine learning model developed in this use case. Across all 
defects, the same Mask-RCN model was used with the only difference being in the amount of 
training data used for each defect and the hyperparameters of the model that are better suited 
depending on the type of defect to be detected. 

 
The post-processing step is concerned with post-processing which involves the validation and 
retraining schedules of the machine learning models. Part of post-processing revolves around 
the standardization of the output format of each module. Arguably the most important aspect 
of post-processing revolves around extracting value from the model outputs. This value ex-
traction depends on the approach used in the model. For example, in case the main objective 
is to provide fine-grained segmentation masks for the defects detected, a comparison in the 
intersection over union against the ground truth annotations is critical. In this case, a variety 
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of thresholds can be used, where the threshold represents the minimum amount of area over-
lap between the detected mask and the ground annotation. If, on the other hand, the goal is 
relatively simpler and focused on detecting the presence of a defect within a bounding box 
area, more relaxed metrics can be used, such as mean average precision. 
 
Finally, the retraining schedule is part of post-processing. This is a crucial part that heavily 
influences the robustness of the models. This is because a model that is trained using a rela-
tively long period of time might start degrading in performance, and so a period should be set 
for re-training. This implies that regular drone flights have to be conducted, such that updated 
images are provided to the model. It is essential that similar flight conditions, distance to the 
structure and image resolution are maintained. 

6.4 Detection and segmentation model 

The Mask -RCNN model used for this use case is an extension of Faster R-CNN. A Regional 
Proposal Network (RPN) is inserted on feature maps to automatically produce RoIs, then a 
small FCN is applied on each RoI to segment the instance of objects with masks when the 
classes and bounding boxes of these defects are predicted with the same pipeline as used in 
Faster R-CNN. In addition, different depth of ResNet and the Feature Pyramid Network (FPN) 
are combined to extract high-quality feature maps. The framework of Mask R-CNN is shown 
in Figure 6.5. 
 

 

Figure 6.5 - The Mask-RCNN framework for instance segmentation (from [9]). 

The Mask-RCNN model was implemented using the Detectron2 library [9], which provides 
state-of-the-art detection and segmentation algorithms. On top of the Mask-RCNN backbone, 
additional functionalities were implemented in order to boost the model’s overall mean accu-
racy precision and intersection over union values: 

• Tiling – patches are extracted from high resolution images in order to improve detection 
of smaller defects, all the while retaining the maximum amount of information rather 
than resizing them; 

• Online augmentations – multiple types of augmentations available in albumentations 
[10], such as pixel-level and spatial-level transformations, including flipping, rotating, 
cropping, etc., were applied in online fashion to boost the model’s generalization ca-
pabilities. In particular, spatial-level transformations are adopted to change input im-
ages, masks and bounding boxes simultaneously; 

• Ensembling – train multiple models and ensemble their results at different confidence 
thresholds, depending on the defect type. 

Figure 6.6 visually shows the improvement in defect detection with the augmented model 
compared to the baseline. 
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Figure 6.6 - Comparison in defect detection between baseline and augmented models. 

The model is deployed in the IBM cloud and using services that support model training, infer-
ence and periodic re-training. Detected and segmented defects with the Mask-RCNN model 
are made available to customers, data scientists and domain experts through the One Click 
Learning (OCL) developed at IBM.  

6.5 Defect detection and segmentation scenario 

The OCL platform (Figure 6.7) takes a data-centric approach to focus the user experience 
around the management of users’ assets and provides advanced capabilities for:  

• powerful data exploration of large datasets and high resolution images with corre-
sponding detected damage;  

• detection, characterization and measurement of damages; 

• reconstruction of infrastructure elements and localization of damages with automated 
image stitching;  

• quick extraction of actionable results;  

• empowering engineers and infrastructure managers to use pre-trained AI models for 
everyday inspections. 

 

Figure 6.7 - One Click Learning (OCL) platform for automated visual inspection. 

 

First, as seen in Figure 6.8, general statistics are presented to the engineer. On the left side, 
a progressive view of the bridge that dives into the pillars, their orientations and corresponding 
images, allow the user to understand the hierarchy of the structure and quickly locate data of 
interest. On the right side, a summarized view of the images collected during drone inspection 
and the defects detected and classified during the inference of the AI model is provided. The 
defects are classified into categories specific to the use case. Below the summary section, 
more detailed statistics are presented, such as average area (in m2) per defect type and dis-
tribution of defects across the dataset.  
 
Additionally, the platform provides filtering options to enable an intuitive and fast navigation 
through the defects. Specifically, one can select one or more defect categories and provide 
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ranges of interest for attributes like area (in pixels or m2), confidence score as resulting from 
the model inference or severity rating. This will return the set of images satisfying this criteria. 
The user can navigate through the selected images and visualize all defects detected in a 
specific image, as seen in Figure 6.9. By hovering with the mouse over a defect, more details 
of interest are provided, such as type of defect, area in pixels and m2, prediction score and 
severity level. While the functionality described so far applies per individual image, it already 
provides great benefits to reliability engineers. However, decisions around repair and mainte-
nance take into consideration the locations of defects in a bridge structure as well. Powered 
by image stitching algorithms, OCL provides an overall view of each bridge pillar. These 
stitched images are reconstructed automatically from the raw high resolution photos taken by 
the drone, by using image rectification and location reconstruction algorithms, and combine 
all defects detected in the individual images that were attached together, as shown in Figure 
6.10. It is always possible for the engineer to go from the overview image to the underlying 
raw photos for further detailed inspection (e.g., by clicking on the red highlighted area in Figure 
6.10). Intuitive navigation through the raw photos is possible by means of a minimap (shown 
in Figure 6.11), which allows for an overview of where in the pillar structure each defect is 
located. 
 

 

Figure 6.8 - Hierarchical view of assets (left); summary of dataset and associated defects, as detected 
and classified into multiple categories during AI-model inference. 

 

Figure 6.9 -Visualization of defects in specific image with associated confidence score as 
computed by the AI-model. 

These stitched images are extremely big in size, as they preserve the full resolution of the 
already detailed raw photos. In order to deliver a smooth navigation, in the civil infrastructure 
component in OCL, images are divided in multi-resolution tiles and streamed to the browser 
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from cloud object storage on demand. This is just one of the challenges that we had to over-
come when dealing with such a big amount of data. Nevertheless, thanks to the flexible archi-
tectural design of the platform and the scalability of cloud-based solutions, we are able to 
deliver a smooth user experience in these complex use cases also. 
 

 

Figure 6.10 - Overall view of a bridge pillar, after image stitching. Summary of defects is pro-
vided on the left and different categories are distinguished by color in the stitched image. 

 

Figure 6.11 - Highlight on a defect; a minimap with the overview stitched image is showing the 
corresponding location of the defect on the full pillar. 
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7 Case study: Continuous monitoring of event streams for 
wind turbines diagnosis and management 

7.1 Use case description 

Although in the last years there has been a substantial increase of the power capacity growth 
of Wind Energy across the EU covering around 11.4% of the EU electricity consumption in 
2015, there is still a long way to go in order to achieve the target in 2030 of at least 27% for 
the share of renewable energy consumed in the EU1. In particular, emerging technologies as 
Offshore Wind Energy, demand new advanced O&M solutions/tools for improving significantly 
their return of investment (RoI) and their Levelised Cost of Energy (LCoE) indicator, as well 
as for performing the reliability and extended lifetime of WTs and farms over the years.  
 
Despite the current O&M strategies to maximise the energy yield, there is a considerable need 
for the reduction of the O&M costs (one of the main contributors to the Renewable Energy 
Cost and Performance) to alleviate their impact in LCoE and improve cost competitiveness of 
offshore wind energy. This challenge can be overcome thanks to the implementation of Con-
dition Monitoring Systems (CMS) and Diagnosis and Prognosis Models to optimise the oper-
ation, maximise lifetime and adjust O&M to real performance of the Wind Turbines (WTG and 
structure). Nevertheless, these technologies must be scaled up and tested under demanding 
real conditions with the main aim of analysing the improvements achieved in the whole life 
cycle of the main components of a Wind Turbine (WT) at Wind Farm (WF) scale. These needs 
have been already identified and prioritized by WINDE EUROPE3 in the near future.  
 
The scenario developed around offshore wind energy is focused on developing a set of so-
phisticated CMS technologies, both for turbine and structure and advanced failure detection 
for diagnosis and prognosis integrated in an O&M decision support tool. The advanced CMS 
analytics have been integrated in an end-to-end system from sensor/models data generation 
to maintenance decision support. Such connectivity from the edge (sensors/models) via the 
cloud (integrator) to the enterprise O&M tools allows for a continuous learning expanding CMS 
models created in test bed environments with field data and observations. These novel con-
cepts/solutions address advanced condition and risk-based approaches based on remote and 
non-intrusive maintenance, allowing the coordination and dispatching of offshore O&M ser-
vices and logistics that can assist O&M managers, while the lifetime of the WTs is substantially 
improved. Advanced O&M tools enable load dependent strategies for individual WTs based 
on load or stress levels induced by wakes and waves. Ideal service slots and working sched-
ules are calculated through the evaluation of data on each component, fittings, vessels and 
service staff, including a reliable analysis of the weather forecast. Therefore, the solutions 
developed in scenario contribute a significant reduction of the O&M costs thanks to both the 
decrease in operating costs (OPEX) due to the optimization of O&M logistics and a reduction 
of unavailability and decrease of material costs and number of inspections.  
 

7.2 Data and Machine learning preliminaries 

Multiple wind turbine farms that took part in this use case collected several types of data, that 
were later used in the model development cycles to provide diagnosis and management ca-
pabilities.  
 
Most importantly, SCADA (Supervision Control and Data Acquisition) data was acquired from 
70, respectively 27 wind turbines operated by two different turbine operators located in Eu-
rope, over a span of 28 months from 2016 to 2018. A total of 312 variables were collected 
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from 70 wind turbines, where for each average, min, max and standard deviation values were 
captured with a 10 min frequency. For the remaining 27 wind turbines, 58 average values, 15 
min values, 15 max values and 14 standard deviation values were captured with the same 
frequency.  
 
In addition to the SCADA data, valuable information regarding work orders for large compo-
nents, such as component categorization and healthy/unhealthy assessments, as well as 
elated work orders, such as component replacements were provided. This type of information 
gives an indication about the health status of a wind turbine and its core components, such as 
the main bearing, gearbox, generator, converter and transformer. Moreover, it allowed the 
construction of healthy datasets, which represented the normal baseline behavior of a wind 
turbine, as well as unhealthy datasets. Both were used further in the training and evaluation 
of various models for diagnosis and management. 
 
Finally, vibration data was additionally collected and primarily used together with SCADA data 
for the learning processes of the model (i.e., learning non-linear relationships between input 
features). Vibration data primarily covers the vibration sensor measurements for the drive 
train. This is done in order to characterize gears and bearing failures in traditional gearboxes, 
main bearings and generators. Vibration data is used to characterize the kinematic behavior 
of the drive train, namely movement patterns, frequency patterns and amplitudes of cyclic 
signals related with drive train vibration over the time.  

7.3 Model development cycle 

The pre-processing step is concerned with extracting a feature set out of the datasets availa-
ble. Since wind turbines have different failure modes, that exhibit significantly different behav-
iors, these are considered independently. Therefore, the feature extraction step is done based 
on the failure mode which is being processed. After the features have been selected, they are 
then processed in a manner that is ingestible by the machine learning model.  
 
This processing primarily involves scaling the features since different features might have dif-
ferent variable spans. i.e., the temperature feature might vary between -10 and 30 degrees 
Celsius, while the power generated varies from 0 to ~5KW in the case of AD5 135 WT. High 
values in power generated might have higher impact on the ML model and therefore should 
be scaled by using tools such as the min-max approach, or by using a standard scaler.  
 
Another major part of pre-processing is dealing with missing data. These can be filled using a 
forward or backward fill, or some more sophisticated approach such as using non-linear inter-
polation depending on the criticality of the feature being used. Features with a high count of 
missing values, or even a relatively lower count of consecutive missing values are generally 
dropped. Constant value features are also dropped, along with high or low entropy features. 
This feature dropping exercise improves the robustness of the machine learning models down 
the line.   

 
The model selection is different for different failure modes since they can differ in the type of 
data used and quantity of labels. These two factors dictate the usability of approaches such 
as anomaly detection or regression. 

 
The post-processing step is concerned with post-processing which involves the validation and 
retraining schedules of the machine learning models. Part of post-processing revolves around 
the standardization of the output format of each module.  
 
Arguably the most important aspect of post-processing revolves around extracting value from 
the model outputs. This value extraction depends on the approach used in the machine learn-
ing model. For example, an anomaly detection approach using a seq-to-seq autoencoder 
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model outputs reconstructions of the original data. The post-processing of these reconstruc-
tions starts with comparison against the original input data to generate a reconstruction error. 
Furthermore, the reconstruction error by itself would still be insufficient and one would further 
need to extract a threshold which when exceeded signals a novelty. At this point the novelties 
are processed to decide if in fact this novelty corresponds to an anomaly or not.  
 
Finally, as mentioned earlier, the retraining schedule is part of post-processing. This is a cru-
cial part that heavily influences the robustness of the models. This is because a model that is 
trained using a relatively long period of time might start degrading in performance, and so a 
period should be set for training. For the models to model the latest wind turbines operation 
regimes (depending on period of year etc.) the models have to be retrained based on a pre-
defined schedule. This schedule is defined for each failure mode separately and is done in a 
fixed interval manner. For example, a failure mode might require the models to be retrained 
every 6 months. The duration of the fixed interval is defined by experimentation on a range of 
values (2, 4, 6 months etc.) and by optimizing for the lowest performance error. Also, another 
factor for defining this schedule is computational constraints since training can very compute 
intensive. 

7.4 Model selection process 

Several suitable machine learning models will be selected per failure mode depending on the 
data type and label quantity that are made available. Depending on the relevance and simi-
larity, these models are shared between different modules along with the pre-processing and 
post-processing, for e.g., the same forecasting model can be used for both the main bearing 
failures and gearbox failures given vibration data in the frequency domain. However, their 
hyperparameters are different. 
 
Prior art in applying machine learning model to wind turbine failures focuses mostly on the use 
of neural networks. These models are trained with data samples that might contain multiple 
values for the same metric measured at different times. Recent developments of neural net-
works have created significantly more powerful ways to represent time, e.g., to learn time-
delayed impact, from multiple input metrics, e.g., Temporal Convolutional Neural networks 
(TCN) [12], and Long Short Term Memory (LSTM) [13] networks. 
 
Based on the nature of the failures and training data sets, the best suited neural network model 
will be selected. Furthermore, while neural networks are especially well suited to discover 
hidden convolutional representations e.g., in images, they also require abundant training data 
to perform well. Given this, the model selection process that will be followed is visualized below 
as a decision tree (Figure 7.1). 

 
The most decisive factor when performing model selection is whether or not labels exist for a 
given failure mode. This dictates the feasibality of performing prognostics which would be the 
case if a significant ammount of labels is present. Otherwise only diagnostics solutions can be 
developed. If labels do exist for a given failure mode, the next question would be whether class 
balance exists within the label set. In other words, whether the minority set which in this use 
case represents failure events are more or less equal to the majority set which represents 
normal behaviour of the wind turbines. If this balance exists between labels, then supervised 
learning can be employed. This would yield the best results in terms of performance, and 
would allow for prognostic approaches to be considered. For example, a supervised classifier 
can be trained to predict if in the near future there would be a failure event or not. If there is 
imbalance between the labels, then based on the amount of available labels, once can check 
if this imbalance is severe or not. If there is a sufficient amount of minority labels, then one 
can resort to minority oversampling techniques, a benchmark example of this is SMOTE [14] 
and some of its more recent variation which can handle high dimensionality and temporal data. 
At this point one can once again perform supervised learning. Otherwise, if this is not the case, 
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that is if the minority samples cannot be augmented, then the only approach which can be 
used is unsupervised learning. 
 
In the case were labels do not exist for a given failure mode, one can check for the existance 
of target variables. These can be in the form of an already existing feature, or can be 
engineered using the expertise of the manufacturers or operators of the wind turbines. An 
example of this would be the extraction of a health index signal from the fundamental 
frequency and its harmonics. In this example the operators identify these frequencies of 
interest based on the relavent litterature on the topic and the machine design. 
 
If these target variables do exist or can be extracted, then a forecasting approach can be 
employed which would also open up the possibility of performing prognostics for a given failure 
mode. Otherwise, the only approach that can be considered is unsupervised learning, such 
as the use of clustering techniques or seq-to-seq autoencoders. 

 

 

Figure 7.1 - Model selection decision tree 

7.5 Forecasting scenario 

When vibration data is available, a forecasting scenario can be tackled. By concatenating 
vibration data in the frequency domain acquired in an irregular fashion based on alarm events 
within the wind turbine, event series can be generated.  
 
These data are then scaled using a min-max scaler to achieve optimum performance when 
using the activation functions used within the ML model. After scaling, missing data and con-
stant values are processed in order to improve the model performance and to make it more 
robust. 
 
These failure modes can be processed using forecasting since a target variable exists as a 
health index signal. This is extracted from the fundamental frequency and its harmonics which 
is then fed into the neural network as a target variable, as shown in Figure 7.2. 
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Figure 7.2 - Extraction of machine learning features when dealing with CMS data. 

Regarding the modelling, an ML model that can model long term dependencies in the data, 
and that can handle a large input sample in the time domain is used. For this reason and since 
the aim is to perform forecasting, a Temporal Convolutional Network (TCN) model is selected. 
As the name suggests the basis for this model are convolutional operations. This might come 
as a surprise since sequence modelling is synonymous with the use of Recurrent Neural Net-
works (RNN) [15]. However, recent evaluations [16] indicate that convolutional architectures 
outperform recurrent networks on such tasks. 
 
Figure 7.3 shows a representation of the TCN architecture. Mainly this architecture makes use 
of dilated convolutions which can span across a longer range of time series. This also results 
in deep networks, i.e., many layers, which can suffer from vanishing gradient problems. There-
fore, we use these dilated layers within residual blocks in order to improve the learning pro-
cess. 

 

 

Figure 7.3 - Temporal Convolutional Network (from [12]). 

The output of the TCN model is a list of values that predict the health index evolution in the 
next month. This can be adjusted to give longer predictions with the trade-off of less accuracy 
the further the predictions are from the last data sample. 
 
If possible, a threshold of failure can be set for this health index. Then the predictions acquired 
from the model can be compared to that threshold for diagnosing the state of the component. 
And the predictions can also be used to detect the first hitting time, i.e., the point in time at 
which the health index reaches or crosses the threshold for the first time. This is then used to 
extract the remaining useful lifetime (RUL). An output forecast can be seen in Figure 7.4. 
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Figure 7.4 - Forecasting module output. 

7.6 Anomaly detection scenario 

When labels are scarce, an unsupervised approach needs to be used, rather than supervised. 
This dictates that other types of architectures for the machine learning models are more ap-
propriate, such as a seq-to-seq autoencoder model which utilizes 1D convolutions that span 
across some 𝑘 number of timesteps and all the features, as shown in Figure 7.5. 

 
This autoencoder model uses a symmetrical architecture, whereby the encoder part of the 
network is symmetrical to the decoder. Usually, one can use an embedding size of 256 and a 
2-layer encoder/decoder configuration. These parameters are of course subject to change 
where necessary and so might vary between modules. This model is trained using samples 
which are 144 timesteps that represent 1 day in time and the adam optimizer [17] for minimiz-
ing the L2 loss [18] between the reconstructions and the original data.  

 

 

Figure 7.5 -1D CNN seq-to-seq autoencoder model. 

To detect abnormal behavior, one classic approach is to compute the reconstruction error of 
the model by measuring the difference between the input and reconstructions. Then these 
errors which are computed on a feature basis are summed up to generate an error signal. The 
average error and standard deviation of that signal is extracted using the training data. This is 
then used to flag novel events. 

 
The output of the model is the Aggregated reconstruction error over all features and a table 
with start and end times of anomalous events. A sample aggregate reconstruction error signal 
can be seen in Figure 7.6. 

 



This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 958171. © 2021  

IM-SAFE-Project | TNO, The Netherlands, All right reserved | 
 

Associated with document Ref. Ares(2020)3731189 - 15/07/2020 

 

Page | 58  

 

 

Figure 7.6 - Anomaly detection module output. 

The yellow background signal is the aggregate error signal. This is then smoothed to achieve 
the signal represented in blue which will be considered for anomaly detection. Also, in the 
figure we have horizontal lines representing the mean reconstruction error and 1 and 2 stand-
ard deviations away from that. If at any point the smoothed error signal breaches the 2 stand-
ard deviation threshold, we consider that event to be a novelty as shown using the red highlight 
in the figure. If these novel events occur in sequence for some predefined 𝑛 number of 
timesteps, then this is considered as an anomaly. The rest of the point anomalies are dis-
carded as false positives. This is further post-processed in order to assess the performance 
of the model given ground truth data, i.e., computing precisions and recall and so on. This of 
course depends on the module and availability of ground truth data. 
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8 Case study: Intelligent Neural Weight in Motion System 

with High Accuracy for automatic penalties on over-

loaded vehicles [MOS] 

8.1 Use case description 

Static and dynamic vehicle weighing systems are used to prevent the degradation of infra-
structure caused by excessive axle or total weight of heavy vehicles. Both parameters are 
limited to ensure proper levels of road safety. Negative impact of overloading on the safety of 
traffic cannot be omitted, since a huge number of overloaded vehicles are still present. Weight  
in-motion systems have been studied as an optimization tool for bridge assessment – in the 
first place it was possible to model the traffic load on the bridge. The effort has been put into 
reducing the number of overloaded vehicles. Data aggregated and transmitted after weighing 
procedure are shared with the Road Transport Inspectorate or other authorities to manage the 
vehicles which break the weight limits. To avoid excessive expenditures on road maintenance 
different static and dynamic weighing systems should be implemented [120]. 

 
One of the Weight-in-Motion platform which has been developed under the Intelligent Devel-
opment Program in 2018 in Poland is a very precise WIM software – NeuroCar WIM, which is 
a part of the large platform – NeuroCar for Intelligent Transportation Systems utilized for vari-
ous purposes (e.g., management of the parking spaces, management of the road lightning).  
 
Architecture of the WIM-System can be mostly described as two parts – measuring stations 
and central systems for managing the stations and data captured (Figure 8.1).  

 

 

Figure 8.1 - Organization of the modules in the measurement station [121]. 

The measuring station is equipped with: 
▪ camera for monitoring of the selected lane,  

▪ measuring camera with an infrared light source, 

▪ quartz sensor system in the road pavement,  
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▪ inductive loops in the road pavement,  

▪ supporting structure to cover the width of the carriageway  

▪ computing terminal consisting of the hardware (computer, controller, transformer), 

▪ software – NeuroCar – for data processing and transmission algorithms. 

Software NeuroCar utilizes the concept of microservices and the protocol based on open data 
formats. Communication is based on per-to-per connections (no data bus) in either IPv4 or 
IPv6 infrastructure. 

8.2 Data machine learning algorithm 

One of the subsystem utilized in the WIM architecture of the NeuroCar WIM consists of the 
Vehicle Identification module, which enables automatic identification of the vehicles based on 
the images generated by a camera. Video identification subsystem core consist of the software 
built on artificial neural network technology which uses DSP techniques.  
The use of neural networks enable automatic recognition of:  

▪ model of the vehicle, 

▪ color of the vehicle,  

▪ vehicle classes, 

▪ content of the registration plate,  

▪ country of origin. 

Photo sequences supplied by a video camera from the observation point are subjected to the 
image processing analysis to detect the presence of the vehicles. Input data for neurons are 
images in the form of registration plates. The neural network recognition process is divided 
into three phases (Figure 8.2):  
 

 

 

Figure 8.2 - Phases of the neural network recognition [122]. 
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Figure 8.3 - NeuroCar deep neural network classifier [123]. 

The scheme of structure of the subsystem for image recognition, where neural networks have 
been implemented is presented below (Figure 8.4): 

 

Figure 8.4 - Image recognition subsystem [124]. 
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8.3 Utilization scenario  

The platform NeuroCar WIM has been implemented as a monitoring system for the Road 
Inspectorate authorities (General Directorate for National Roads and Motorways in Poland) in 
different national regions. According to the Neurosoft Sp. z o.o. company website portfolio the 
platform has been successfully applied on 36 lanes in Poland and the average number of 
overloaded vehicles in the month from one measuring station is 1200 [125]. 
 
The user interface depends on the license of the software and needs – can be extended with 
additional functionalities. Graphical user interface allows to view measurement data, configu-
ration changes and turn on/off the activities (Figure 8.3). Interface has a form of a web appli-
cation, which can be opened on tablets, computers and mobile phones. Inside the platform 
there are all measurement points of the system implemented, which can be easily tracked 
through (Figure 8.5).   

 

 

Figure 8.5 - Initial panel of the platform. 

 

Figure 8.6 - Localization map of the measurement stations (example). 

In the ‘Traces’ tab there is a real-time database of all vehicles passing by the measuring points 
with the exact time and other identification data (Figure 8.6). The list can be changed to the 
overview with an outline of the vehicles (Figure 8.7) and their sketches (Figure 8.8). 



This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 958171. © 2021  

IM-SAFE-Project | TNO, The Netherlands, All right reserved | 
 

Associated with document Ref. Ares(2020)3731189 - 15/07/2020 

 

Page | 63  

 

 

Figure 8.7 - Register of the vehicles in a form of a list. 

 

Figure 8.8 - Register of the vehicles with the body sketches. 

The database contains details with the captured photography, register plate and all the nec-
essary information to identify vehicles that violate traffic regulations and load limits (Figure 
8.9). 
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Figure 8.9 - Register of the vehicles passed by the lane in the selected period of time. 

In NeuroCar platform there is also module called ‘Measure-in-Motion’ which analyses the 
data signals from the LIDAR system mounted above the measuring point. ‘Measure-in-Mo-
tion’ module allows to: 
 

• detect the vehicle in the measurement field, 

• detect the direction of movement, 

• detect the 3D body of the vehicle (Figure 8.10),  

• calculate the height profile (detection of exceeding the permissible height), 

• classification of vehicles with accordance to the 3D model.  

 

Figure 8.10 - 3D model of the vehicle 
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