IM-SAFE

Harmonised Transport Infrastructure Monitoring in Europe for Optimal Maintenance and Safety

IM-SAFE (ref. 958171)

<u>www.IM-safe-project.eu</u> <u>https://www.linkedin.com/company/im-safe-project/</u> <u>https://cordis.europa.eu/project/id/958171</u>

AFTERNOON SESSION

Moderated by A.J. Bigaj-van Vliet (TNO, the Netherlands)

Data-informed structural performance assessment

Contributors: P. Darò ¹, G. Mancini ¹, A. Strauss ², D.L. Allaix ³, A.J. Bigaj-van Vliet ³

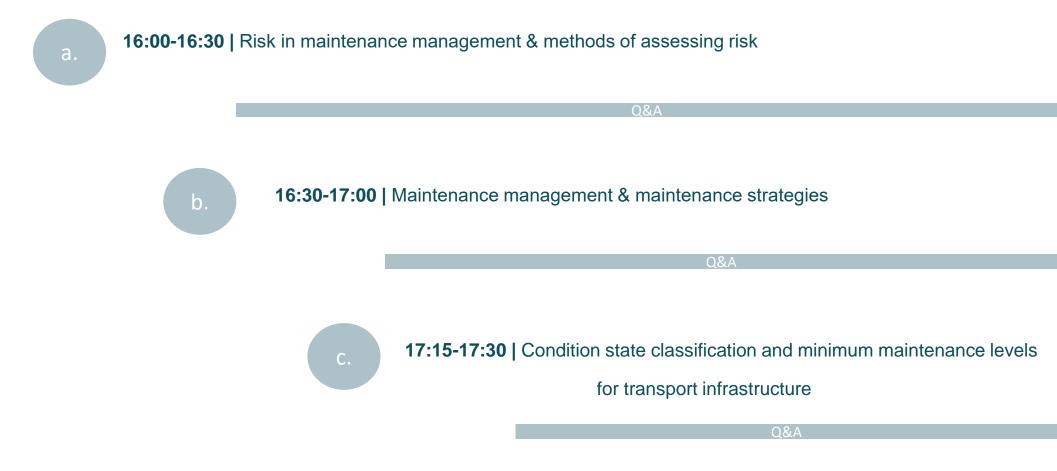
Risk assessment and risk-based framework

Contributors: H. van Meerveld ³, B. Cerar ³, A.J. Bigaj-van Vliet ³, A. Strauss ², L. Ptacek ²

¹ SACERTIS Ingegneria S.r.l., Turin, Italy
² University of Natural Resources and Life Sciences, Vienna, Austria
³ TNO, Delft, the Netherlands

Risk-based maintenance management & maintenance strategies

Contributors: H. van Meerveld, B. Cerar, A.J. Bigaj-van Vliet


Speaker: H. van Meerveld (TNO, Delft, the Netherlands)

ir. Hendrik van Meerveld

- TNO Department of Structural Reliability
- Consultant asset management

16:00-16:30 | Risk in maintenance management & methods of assessing risk

16:30-17:00 | Maintenance management & maintenance strategies

Q&A

0&A

7:15-17:30 | Condition state classification and minimum maintenance levels

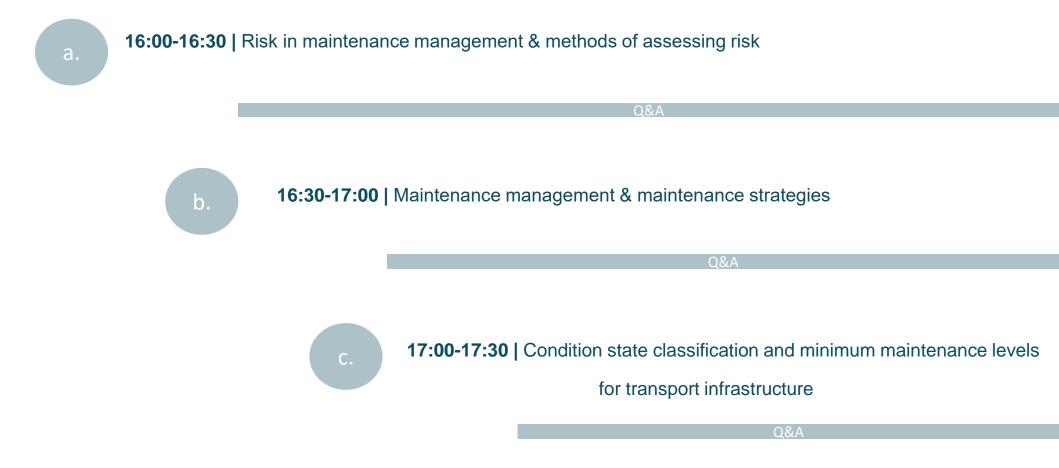
for transport infrastructure

Q&A

AFTERNOON SESSION

Moderated by A.J. Bigaj-van Vliet (TNO, the Netherlands)

Data-informed structural performance assessment


Contributors: P. Darò¹, G. Mancini¹, A. Strauss², D.L. Allaix³, A.J. Bigaj-van Vliet³

Risk assessment and risk-based framework

Contributors: H. van Meerveld ³, B. Cerar ³, A. Strauss ², L. Ptacek ², A.J. Bigaj-van Vliet ¹

¹ SACERTIS Ingegneria S.r.l., Turin, Italy
² University of Natural Resources and Life Sciences, Vienna, Austria
³ TNO, Delft, the Netherlands

b.

16:00-16:30 | Risk in maintenance management & methods of assessing risk

16:30-17:00 | Maintenance management & maintenance strategies

Q&A

0&A

7:00-17:30 | Condition state classification and minimum maintenance levels

for transport infrastructure


Q&A

RISK IN MAINTENANCE MANAGEMENT

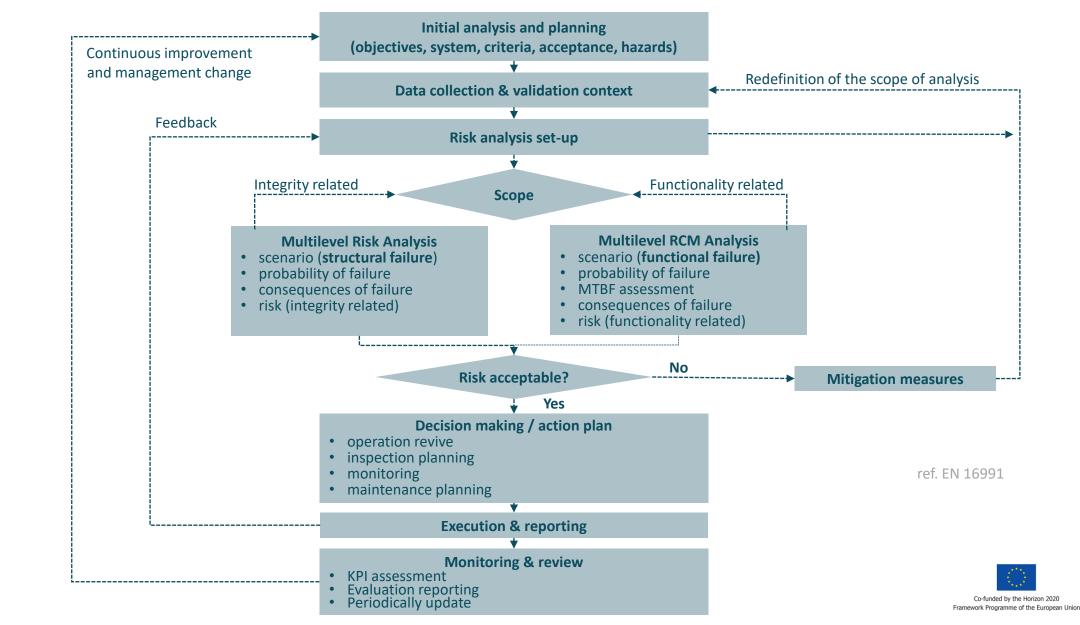
Function	In intended task of a system that is being performed.				
Performance	Efficiency of a system; indicating how well the system works ¹ Note: Efficiency of a system with regard to structural behaviour is referred to as structural performance				
Structural performance	The behaviour or a condition of a structure or a structural component, as a consequence of actions , usually classified by means of a quantitative parameters (e.g. reliability index, ratio between (local/overall) resistance capacity and action effect).				
Maintenance	Combination of all technical, administrative and managerial actions performed during the service life of the structure in order to retain at or restore its performance and future serviceability at/to the level at which it can perform the required function.				

- The purpose of maintenance is to retain or restore performance.
- To maintain performance we need to know (and understand) risk.

RISK IN MAINTENANCE MANAGEMENT

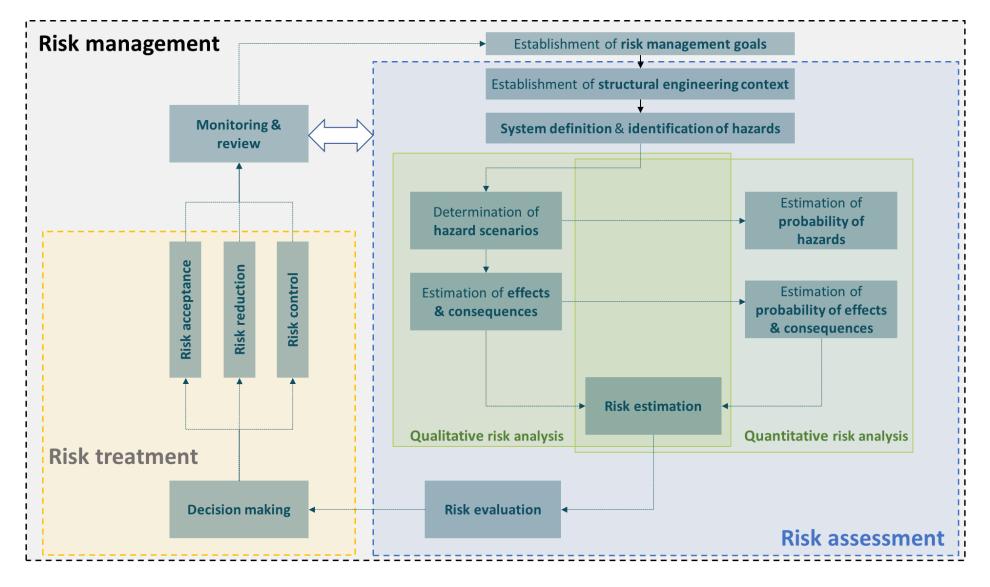
Hazard	Potential source of undesirable consequences . ¹ ¹ Note: Actions on structures are source of potential harm and present hazards to structures.
Event	Occurrence or change of a particular set of circumstances ¹ An event can be one or more occurrences, and can have several causes. ² An event can be a source of risk.
Risk	The effect of uncertainty on objectives, realized as the expected value of all undesirable consequences , combining the probability of event and related consequences.

• As a single event: risk *R* is the probability *P* having potential consequences *C*:


 $R = P \times C$

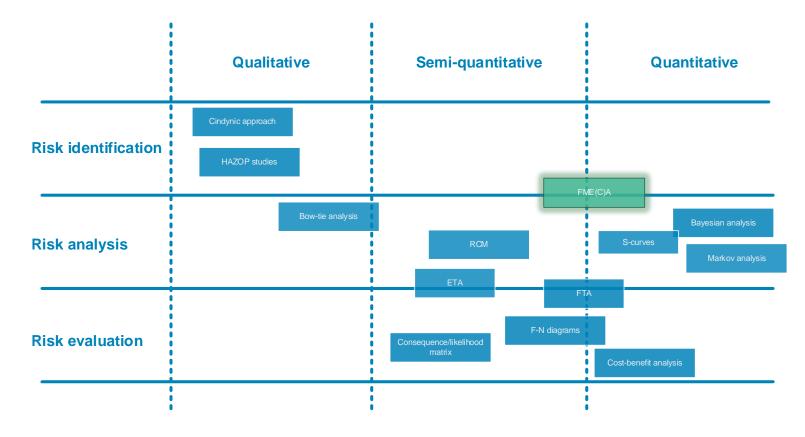
• As multiple events: expressed as the value of expected consequences *E*(*C*):

$$R = E(C) = \sum_{i=1}^{n} p_i \times C_i$$



RISK-BASED MAINTENANCE MANAGEMENT FRAMEWORK

IM-SAFE


RISK MANAGEMENT PROCESS & RISK-BASED DECISION-MAKING

Co-funded by the Horizon 2020 Framework Programme of the European Union

METHODS OF ASSESSING RISK

- **Understanding risk means:** (1) identifying risks, (2) identify causes, (3) identify consequences, (4) quantify aforementioned in order to be able to determine an appropriate way to manage risk.
- There are many risk assessment methods; a possible typology is shown below

Q&A

- Question (Zoom poll): Do you use risk assessments methods to identify, analyses and evaluate risks?
 - No
 - Yes; they are mainly qualitative
 - Yes; they are mainly semi-quantitative
 - Yes; they are mainly quantitative
- Question (Zoom poll): Do you use other (more detailed) risk assessment methods for high-critical assets?
 - Yes
 - No

 Discussion: Would harmonized standardization in risk estimation and/or risk evaluation be desired?



d.

- Determining maintenance strategies is a important step in developing and/or improving maintenance plans.
- Starting point is a thorough understanding of potential risks.
- For each identified risk, an appropriate maintenance strategy is chosen.
- The result of the above is a 'first' maintenance plan outlining:
 - What information is needed (e.g. via inspection, monitoring, etc.) and what activities are required in this regard.
 - What maintenance actions are expected and or planned.
- The maintenance plan may then be further optimized (e.g. combining activities).

• For each risk identified, an appropriate maintenance strategy has to be devised.

Typology of maintenance strategies			Generic motivation for choice (based on risk assessment)			Activities (next to maintenance)
			Risk	Failure	Effectiveness	(next to maintenance)
Corrective	Failure-based (e.g. Run to failure)		Acceptable	Not relevant	N/A	Observe failure
Preventive	Predetermined	Time-based	Unacceptable	Can be predicted sufficiently accurate based on time.	When above is not (cost)effective	Monitor time
		Use-based		Can be predicted sufficiently accurate based on use.	When above is not (cost)effective	Monitor use
	Condition-based	Non-predictive		Can be determined sufficiently accurate on observed condition.	When above is not (cost)effective	Observe condition and compare to criteria
		Predictive		Can be predicted sufficiently accurate based on observed condition.	When above is not (cost)effective	Observe condition, make prediction, and compared to criteria

Improvement	Unacceptable	Cannot be predicted	When above is not (cost)effective	Redesign and implement improvements
-------------	--------------	---------------------	-----------------------------------	-------------------------------------

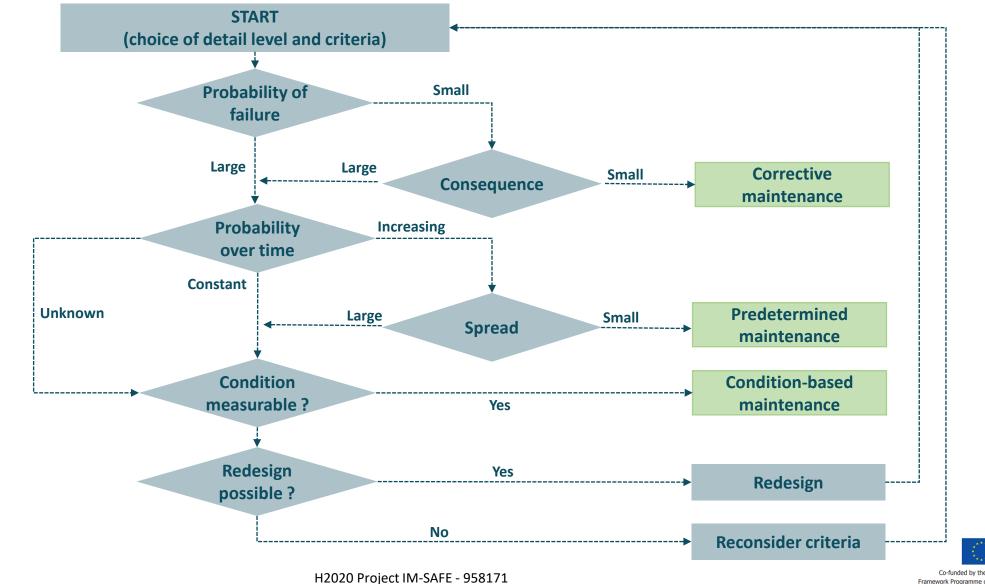
After detected fault

Corrective Maintenanc

Immediate

Deferred

Before detected fault


Scheduled

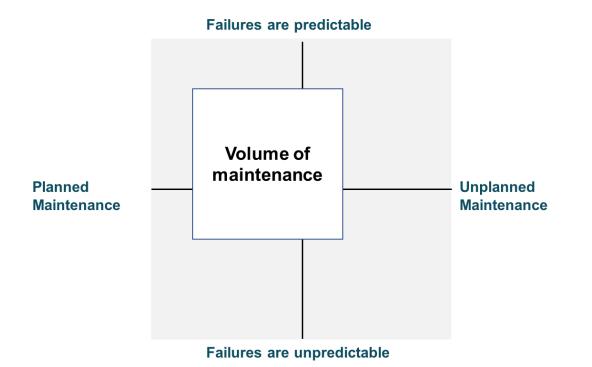
Scheduled,

continous on request

IM-SAFE®

b.

Results


- List of maintenance actions and strategies
- Optimization
 - Clustering of activities
 - Selecting intervals
- Possible results:
 - Maintenance concept or plan
 - Update of the maintenance concept or plan
 - Recommendation

• Maintenance : ideally predictable and plannable

	Planned/scheduled	Unplanned/unscheduled
Before failure occurs	Predetermined / Condition based	Opportunistic
After failure occured	Deffered corrective	Immediate corrective

Q&A

 Question (Zoom poll): What maintenance strategy is most common with regard to structural performance of bridges and tunnels?

- Corrective
- Time/use-based
- Non-predictive condition-based
- Predictive condition-based

• Question (Zoom poll): Do you see a shift towards an different approach in maintenance strategies?

- I don't see any shift in the foreseeable future
- Corrective
- Time/use-based
- Non-predictive condition-based
- Predictive condition-based

• Discussion:

Which drivers determine the choice of the maintenance strategy in the current practice?

To which extend innovation in data analytics & sensor technologies will influence the choice of maintenance strategies in the future?

D.

Thank you all for attending, questions, input, etc.

<u>www.IM-safe-project.eu</u> <u>https://www.linkedin.com/company/im-safe-project/</u> <u>https://cordis.europa.eu/project/id/958171</u>

IM-SAFE (ref. 958171)

